Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillermo Mazzolini is active.

Publication


Featured researches published by Guillermo Mazzolini.


Journal of Clinical Oncology | 2004

Phase I Trial of Intratumoral Injection of an Adenovirus Encoding Interleukin-12 for Advanced Digestive Tumors

Bruno Sangro; Guillermo Mazzolini; J.J. Ruiz; Maite Herraiz; Jorge Quiroga; Ignacio Herrero; Alberto Benito; Javier Larrache; Jesús C. Pueyo; Jose Carlos Subtil; Cristina Olagüe; Josu Sola; Belén Sádaba; Carlos Lacasa; Ignacio Melero; Cheng Qian; Jesús Prieto

PURPOSE To evaluate the feasibility and safety of intratumoral injection of an adenoviral vector encoding human interleukin-12 genes (Ad.IL-12) and secondarily, its biologic effect for the treatment of advanced digestive tumors. PATIENTS AND METHODS Ad.IL-12 was administered in doses ranging from 2.5 x 10(10) to 3 x 10(12) viral particles, to seven cohorts of patients with advanced pancreatic, colorectal, or primary liver malignancies. Patients were thoroughly assessed for toxicity, and antitumor response was evaluated by imaging techniques, tumor biopsy, and hypersensitivity skin tests. Patients with stable disease and no serious adverse reactions were allowed to receive up to 3 monthly doses of Ad.IL-12. RESULTS Twenty-one patients (nine with primary liver, five with colorectal, and seven with pancreatic cancers) received a total of 44 injections. Ad.IL-12 was well tolerated, and dose-limiting toxicity was not reached. Frequent but transient adverse reactions, including fever, malaise, sweating, and lymphopenia, seemed to be related to vector injection rather than to transgene expression. No cumulative toxicity was observed. In four of 10 assessable patients, a significant increase in tumor infiltration by effector immune cells was apparent. A partial objective remission of the injected tumor mass was observed in a patient with hepatocellular carcinoma. Stable disease was observed in 29% of patients, mainly those with primary liver cancer. CONCLUSION Intratumoral injection of up to 3 x 10(12) viral particles of Ad.IL-12 to patients with advanced digestive malignancies is a feasible and well-tolerated procedure that exerts only mild antitumor effects.


Journal of Immunology | 2000

Intratumoral coinjection of two adenoviruses, one encoding the chemokine IFN-gamma-inducible protein-10 and another encoding IL-12, results in marked antitumoral synergy

Iñigo Narvaiza; Guillermo Mazzolini; Miguel Barajas; Marina Duarte; Mikel Zaratiegui; Cheng Qian; Ignacio Melero; Jesús Prieto

We have constructed a recombinant defective adenovirus that expresses functional murine IFN-γ-inducible protein-10 (IP-10) chemokine (AdCMVIP-10). Injection of AdCMVIP-10 into s.c. tumor nodules derived from the CT26 murine colorectal adenocarcinoma cell line displayed some antitumor activity but it was not curative in most cases. Previous studies have shown that injection of similar s.c. CT26 tumor nodules with adenovirus-encoding IL-12 (AdCMVIL-12) induces tumor regression in nearly 70% of cases in association with generation of antitumor CTL activity. AdCMVIP-10 synergizes with the antitumor effect of suboptimal doses of AdCMVIL-12, reaching 100% of tumor eradication not only against injected, but also against distant noninjected tumor nodules. Colocalization of both adenoviruses at the same tumor nodule was required for the local and distant therapeutic effects. Importantly, intratumoral gene transfer with IL-12 and IP-10 generated a powerful tumor-specific CTL response in a synergistic fashion, while both CD4 and CD8 T cells appeared in the infiltrate of regressing tumors. Moreover, the antitumor activity of IP-10 plus IL-12 combined gene therapy was greatly diminished by simultaneous in vivo depletion of CD4+ and CD8+ T cells but was largely unaffected by single depletion of each T cell subset. An important role for NK cells was also suggested by asialo GM1 depletion experiments. From a clinical point of view, the effects of IP-10 permit one to lower the required gene transfer level of IL-12, thus preventing dose-dependent IL-12-mediated toxicity while improving the therapeutic efficacy of the elicited antitumor response.


Journal of Clinical Oncology | 2005

Intratumoral Injection of Dendritic Cells Engineered to Secrete Interleukin-12 by Recombinant Adenovirus in Patients With Metastatic Gastrointestinal Carcinomas

Guillermo Mazzolini; Carlos Alfaro; Bruno Sangro; Esperanza Feijoo; Juan Ruiz; Alberto Benito; Iñigo Tirapu; Ainhoa Arina; Josu Sola; Maite Herraiz; Felipe Lucena; Cristina Olagüe; Jose Carlos Subtil; Jorge Quiroga; Ignacio Herrero; Belén Sádaba; Maurizio Bendandi; Cheng Qian; Jesús Prieto; Ignacio Melero

PURPOSE To evaluate the feasibility and safety of intratumoral injection of autologous dendritic cells (DCs) transfected with an adenovirus encoding interleukin-12 genes (AFIL-12) for patients with metastatic gastrointestinal carcinomas. Secondarily, we have evaluated biologic effects and antitumoral activity. PATIENTS AND METHODS Seventeen patients with metastatic pancreatic (n = 3), colorectal (n = 5), or primary liver (n = 9) malignancies entered the study. DCs were generated from CD14+ monocytes from leukapheresis, cultured and transfected with AFIL-12 before administration. Doses from 10 x 10(6) to 50 x 10(6) cells were escalated in three cohorts of patients. Patients received up to three doses at 21-day intervals. RESULTS Fifteen (88%) and 11 of 17 (65%) patients were assessable for toxicity and response, respectively. Intratumoral DC injections were mainly guided by ultrasound. Treatment was well tolerated. The most common side effects were lymphopenia, fever, and malaise. Interferon gamma and interleukin-6 serum concentrations were increased in 15 patients after each treatment, as well as peripheral blood natural killer activity in five patients. DC transfected with AFIL-12 stimulated a potent antibody response against adenoviral capsides. DC treatment induced a marked increase of infiltrating CD8+ T lymphocytes in three of 11 tumor biopsies analyzed. A partial response was observed in one patient with pancreatic carcinoma. Stable disease was observed in two patients and progression in eight patients, with two of the cases fast-progressing during treatment. CONCLUSION Intratumoral injection of DC transfected with an adenovirus encoding interleukin-12 to patients with metastatic gastrointestinal malignancies is feasible and well tolerated. Further studies are necessary to define and increase clinical efficacy.


Journal of Hepatology | 2001

Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin-12 (IL-12)

Miguel Barajas; Guillermo Mazzolini; Volker Schmitz; Iñigo Narvaiza; Roberto Bilbao; G. Genove; M. Zabala; Bruno Sangro; Ignacio Melero; C. Qian; Jesús Prieto

The use of gene therapy to enhance antitumor immunity has emerged as a promising procedure to fight cancer. In this study we have tested the ability of an adenovirus carrying interleukin 12 (IL-12) gene (AdCMVIL-12) to eliminate tumoral lesions in 3 animal models of orthotopic hepatocellular carcinoma (HCC). Intratumoral injection of AdCMVIL-12 in animals with a single big tumor nodule implanted in the liver resulted in significant inhibition of tumor growth in a dose-dependent manner. Fifty percent of animals that received a dose of 5 x 10(9) plaque-forming units, showed complete regression of the tumor 2 weeks after treatment. In animals with 2 independent tumor nodules in the left liver lobe, injection in only one of them of 5 x 10(9) pfu AdCMVIL-12 induced, 15 days after therapy, complete regression of 50% of treated tumors and also of 50% of untreated lesions, with 60% long-term survival. Rats that were tumor free after therapy with AdCMVIL-12 showed protection against tumor rechallenge. A group of rats received the carcinogen diethylnitrosamine and developed multiple hepatic dysplasic nodules of 1 to 5 mm in diameter. These animals were treated by intrahepatic artery injection of either AdCMVIL-12 (5 x 10(9) pfu) or control vector. In this model AdCMVIL-12 induced complete tumor regression in 20% of treated rats and inhibited tumor growth in 60% of cases with an increase in rat survival. Activation of natural killer (NK) cells and inhibition of angiogenesis were found to be antitumor mechanisms set in motion by AdCMVIL-12. Our data indicate that experimental HCC can be efficiently treated by intratumoral or intravascular injection of adenovirus expressing IL-12.


Gene Therapy | 1999

Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas

Ignacio Melero; Marina Duarte; Juan Ruiz; Bruno Sangro; J C Galofré; Guillermo Mazzolini; Matilde Bustos; Cheng Qian; Jesús Prieto

Stimulation of the antitumor immune response by dendritic cells (DC) is critically dependent on their tightly regulated ability to produce interleukin-12 (IL-12). To enhance this effect artificially, bone marrow (BM)-derived DC were genetically engineered to produce high levels of functional IL-12 by ex vivo infection with a recombinant defective adenovirus (AdCMVIL-12). DC-expressing IL-12 injected into the malignant tissue eradicated 50–100% well established malignant nodules derived from the injection of two murine colon adenocarcinoma cell lines. Successful therapy was dependent on IL-12 transfection and was mediated only by syngeneic, but not allogeneic BM-derived DC, indicating that compatible antigen-presenting molecules were required. The antitumor effect was inhibited by in vivo depletion of CD8+ T cells and completely abrogated by simultaneous depletion with anti-CD4 and anti-CD8 mAbs. Mice which had undergone tumor regression remained immune to a rechallenge with tumor cells, showing the achievement of long-lasting systemic immunity that also was able to reject simultaneously induced concomitant untreated tumors. Tumor regression was associated with a detectable CTL response directed against tumor-specific antigens probably captured by DC artificially released inside tumor nodules. Our results open the possibility of similarly treating the corresponding human malignancies.


International Journal of Cancer | 2005

Dendritic cells delivered inside human carcinomas are sequestered by interleukin-8

Esperanza Feijoo; Carlos Alfaro; Guillermo Mazzolini; Patricia Serra; Iván Peñuelas; Ainhoa Arina; Eduardo Huarte; Iñigo Tirapu; Belén Palencia; Oihana Murillo; Juan Ruiz; Bruno Sangro; José A. Richter; Jesús Prieto; Ignacio Melero

In the course of a clinical trial consisting of intratumoral injections of dendritic cells (DCs) transfected to produce interleukin‐12, the use of 111In‐labeled tracing doses of DCs showed that most DCs remained inside tumor tissue, instead of migrating out. In search for factors that could explain this retention, it was found that tumors from patients suffering hepatocellular carcinoma, colorectal or pancreatic cancer were producing IL‐8 and that this chemokine attracted monocyte‐derived dendritic cells that uniformly express both IL‐8 receptors CXCR1 and CXCR2. Accordingly, neutralizing antihuman IL‐8 monoclonal antibodies blocked the chemotactic attraction of DCs by recombinant IL‐8, as well as by the serum of the patients or culture supernatants of human colorectal carcinomas. In addition, tissue culture supernatants of colon carcinoma cells inhibited DC migration induced by MIP‐3β in an IL‐8‐dependent fashion. IL‐8 production in malignant tissue and the responsiveness of DCs to IL‐8 are a likely explanation of the clinical images, which suggest retention of DCs inside human malignant lesions. Impairment of DC migration toward lymphoid tissue could be involved in cancer immune evasion.


Cancer Gene Therapy | 1999

Regression of colon cancer and induction of antitumor immunity by intratumoral injection of adenovirus expressing interleukin-12

Guillermo Mazzolini; Cheng Qian; Xiaoming Xie; Y. Sun; Juan J. Lasarte; Marek Drozdzik; Jesús Prieto

Interleukin-12 (IL-12) has been shown to possess potent immunoregulatory and antitumoral effects. We have evaluated the anti-oncogenic potential and the mechanisms of the antitumoral effect of in vivo adenovirus-mediated transfer of IL-12 gene in a murine model of colon cancer. AdCMVIL-12 was constructed to permit coordinated production of p40 and p35 subunits of IL-12 gene to obtain the maximum IL-12 bioactivity. Infection of murine colon cancer CT-26 cells in vitro with AdCMVIL-12 resulted in the production of high levels of IL-12. In vivo gene therapy of colon cancer nodules by intratumoral injection of AdCMVIL-12 induced a local increase in IL-12 and interferon-γ levels and a complete regression of the tumor in 26 of 34 (76%) mice. Tumor disappeared between days 7 and 10 after vector administration. The antitumoral effect was mediated by CD8+ T cells and was associated with the generation of cytotoxic T lymphocytes against colon cancer cells. Animals that eliminated the tumor were protected against a second administration of neoplastic cells. Treatment with AdCMVIL-12 of one tumor nodule also caused regression of established tumors at distant sites. These data demonstrate that AdCMVIL-12 is a useful therapeutic tool for established colon cancer in mice and should be considered for application in humans.


Trends in Immunology | 2001

IL-12 gene therapy for cancer: in synergy with other immunotherapies

Ignacio Melero; Guillermo Mazzolini; Iñigo Narvaiza; Cheng Qian; Lieping Chen; Jesús Prieto

In preclinical models of cancer, gene therapy with interleukin 12 (IL-12) has reached unprecedented levels of success when combined with immunotherapy approaches such as gene transfer of other cytokines and/or chemokines, costimulatory molecules or adoptive cell therapy. These combinations have been found to produce synergistic rather than additive effects. Meanwhile, IL-12 gene therapy is beginning clinical testing as a single agent, but combination strategies are at hand.


Cancer Gene Therapy | 2010

A phase I clinical trial of thymidine kinase-based gene therapy in advanced hepatocellular carcinoma

B Sangro; Guillermo Mazzolini; M Ruiz; J Ruiz; J Quiroga; I Herrero; Cheng Qian; A Benito; J Larrache; C Olagüe; J Boan; I Peñuelas; B Sádaba; Jesús Prieto

The aim of this phase I clinical trial was to assess the feasibility and safety of intratumoral administration of a first-generation adenoviral vector encoding herpes simplex virus thymidine kinase (HSV-TK) gene (Ad.TK) followed by systemic ganciclovir to patients with advanced hepatocellular carcinoma (HCC). Secondarily, we have analyzed its antitumor effect. Ten patients were enrolled in five dose-level cohorts that received from 1010 to 2 × 1012 viral particles (vp). Ad.TK was injected intratumorally and patients received up to three doses at 30-day intervals. Positron emission tomography was used to monitor TK gene expression. Ad.TK injection was feasible in 100% of cases. Treatment was well tolerated and dose-limiting toxicity was not achieved. Cumulative toxicity was not observed. Hepatic toxicity was absent even in cirrhotic patients. Fever, flu-like syndrome, pain at the injection site and pancytopenia were the most common side effects. No partial responses were observed and 60% of patients showed tumor stabilization of the injected lesion. Importantly, two patients who received the highest dose showed signs of intratumoral necrosis by imaging procedures. One of them achieved a sustained stabilization and survived for 26 months. In conclusion, Ad.TK can be safely administered by intratumoral injection to patients with HCC up to 2 × 1012 vp per patient.


International Journal of Cancer | 2004

Improving efficacy of interleukin-12-transfected dendritic cells injected into murine colon cancer with anti-CD137 monoclonal antibodies and alloantigens

Iñigo Tirapu; Ainhoa Arina; Guillermo Mazzolini; Marina Duarte; Carlos Alfaro; Esperanza Feijoo; Cheng Qian; Lieping Chen; Jesús Prieto; Ignacio Melero

Intralesional administration of cultured dendritic cells (DCs) engineered to produce IL‐12 by in vitro infection with recombinant adenovirus frequently displays eradicating efficacy against established subcutaneous tumors derived from the CT26 murine colon carcinoma cell line. The elicited response is mainly mediated by cytolitic T lymphocytes. In order to search for strategies that would enhance the efficacy of the therapeutic procedure against less immunogenic tumors, we moved onto malignancies derived from the inoculation of MC38 colon cancer cells that are less prone to undergo complete regression upon a single intratumoral injection of IL‐12‐secreting DCs. In this model, we found that repeated injections of such DCs, as opposed to a single injection, achieved better efficacy against both the injected and a distantly implanted tumor; that the use of semiallogeneic DCs that are mismatched in one MHC haplotype with the tumor host showed slightly better efficacy; and that the combination of this treatment with systemic injections of immunostimulatory anti‐CD137 (4‐1BB) monoclonal antibody achieved potent combined effects that correlated with the antitumor immune response measured in IFN‐γ ELISPOT assays. The elicited systemic immune response eradicates concomitant untreated lesions in most cases. Curative efficacy was also found against some tumors established for 2 weeks when these strategies were used in combination. These are preclinical pieces of evidence to be considered in order to enhance the therapeutic benefit of a strategy that is currently being tested in clinical trials. Supplementary Material for this aricle can be found on the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020‐7136/suppmat/index.html.

Collaboration


Dive into the Guillermo Mazzolini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge