Mariana Malvicini
Austral University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mariana Malvicini.
Glycobiology | 2012
Flavia Piccioni; Mariana Malvicini; Mariana Garcia; Andrés Rodriguez; Catalina Atorrasagasti; Néstor Kippes; Ignacio T Piedra Buena; Manglio Rizzo; Juan Bayo; Jorge B. Aquino; Manuela Viola; Alberto Passi; Laura Alaniz; Guillermo Mazzolini
Liver cirrhosis is characterized by an excessive accumulation of extracellular matrix components, including hyaluronan (HA). In addition, cirrhosis is considered a pre-neoplastic disease for hepatocellular carcinoma (HCC). Altered HA biosynthesis is associated with cancer progression but its role in HCC is unknown. 4-Methylumbelliferone (4-MU), an orally available agent, is an HA synthesis inhibitor with anticancer properties. In this work, we used an orthotopic Hepa129 HCC model established in fibrotic livers induced by thioacetamide. We evaluated 4-MU effects on HCC cells and hepatic stellate cells (HSCs) in vitro by proliferation, apoptosis and cytotoxicity assays; tumor growth and fibrogenesis were also analyzed in vivo. Our results showed that treatment of HCC cells with 4-MU significantly reduced tumor cell proliferation and induced apoptosis, while primary cultured hepatocytes remained unaffected. 4-MU therapy reduced hepatic and systemic levels of HA. Tumors systemically treated with 4-MU showed the extensive areas of necrosis, inflammatory infiltrate and 2-3-fold reduced number of tumor satellites. No signs of toxicity were observed after 4-MU therapy. Animals treated with 4-MU developed a reduced fibrosis degree compared with controls (F1-2 vs F2-3, respectively). Importantly, 4-MU induced the apoptosis of HSCs in vitro and decreased the amount of activated HSCs in vivo. In conclusion, our results suggest a role for 4-MU as an anticancer agent for HCC associated with advanced fibrosis.
Molecular Pharmaceutics | 2011
Mariana Garcia; Juan Bayo; Marcela Bolontrade; Leonardo Sganga; Mariana Malvicini; Laura Alaniz; Jorge B. Aquino; Esteban Fiore; Manglio Rizzo; Andrés Rodriguez; Alicia Lorenti; Oscar Andriani; Osvaldo L. Podhajcer; Guillermo Mazzolini
Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third cause of cancer-related death. Fibrogenesis is an active process characterized by the production of several proinflammatory cytokines, chemokines and growth factors. It involves the activation of hepatic stellate cells (HSCs) which accumulate at the site of injury and are the main source of the extracellular matrix deposits. There are no curative treatments for advanced HCC, thus, new therapies are urgently needed. Mesenchymal stromal cells (MSCs) have the ability to migrate to sites of injury or to remodeling tissues after in vivo administration; however, in several cancer models they demonstrated limited efficacy to eradicate experimental tumors partially due to poor engraftment. Thus, the aim of this work was to analyze the capacity of human MSCs (hMSCs) to migrate and anchor to HCC tumors. We observed that HCC and HSCs, but not nontumoral stroma, produce factors that induce hMSC migration in vitro. Conditioned media (CM) generated from established HCC cell lines were found to induce higher levels of hMSC migration than CM derived from fresh patient tumor samples. In addition, after exposure to CM from HCC cells or HSCs, hMSCs demonstrated adhesion and invasion capability to endothelial cells, type IV collagen and fibrinogen. Consistently, these cells were found to increase metalloproteinase-2 activity. In vivo studies with subcutaneous and orthotopic HCC models indicated that intravenously infused hMSCs migrated to lungs, spleen and liver. Seven days post-hMSC infusion cells were located also in the tumor in both models, but the signal intensity was significantly higher in orthotopic than in subcutaneous model. Interestingly, when orthotopic HCC tumors where established in noncirrhotic or cirrhotic livers, the amount of hMSCs localized in the liver was higher in comparison with healthy animals. A very low signal was found in lungs and spleens, indicating that liver tumors are able to recruit them at high efficiency. Taken together our results indicate that HCC and HSC cells produce factors that efficiently induce hMSC migration toward tumor microenvironment in vitro and in vivo and make MSCs candidates for cell-based therapeutic strategies to hepatocellular carcinoma associated with fibrosis.
Cancer Letters | 2009
Laura Alaniz; Miguel Rizzo; Mariana Malvicini; Jorge Jaunarena; Diego Avella; Catalina Atorrasagasti; Jorge B. Aquino; Mariana Garcia; Pablo Matar; Marcelo Silva; Guilermo Mazzolini
Hyaluronan modulates cancer progression by multiple mechanisms; nevertheless, its effects remain controversial. In this work, low molecular weight (LMW) hyaluronan but not high molecular weight (HMW) was found to significantly reduce colorectal carcinoma (CRC) growth in vitro and in vivo. Both survival and proliferation of CT26 tumor cells were affected by treatment with low doses of LMW HA, with involvement of Akt signaling mechanisms. We show for the first time that splenocytes isolated from LMW HA-treated animals present significantly higher proliferative capacity upon stimulation with dendritic cells (DCs) pulsed with tumor lysate. Consistently, expression of MHC class II and costimulatory molecules were increased in DCs isolated from the spleen of LMW HA-treated mice. Besides, increased tumor infiltrating lymphocytes was observed in animals treated with LMW HA. Our results suggest that LMW HA in a model of CRC triggers an activation of immune system, which is likely involved in the observed tumor growth inhibition. LMW HA is suggested as a candidate molecule for therapeutic adjuvant treatments in CRC immunotherapy.
Clinical Cancer Research | 2009
Mariana Malvicini; Miguel Rizzo; Laura Alaniz; Federico Piñero; Mariana Garcia; Catalina Atorrasagasti; Jorge B. Aquino; Viviana R. Rozados; O. Graciela Scharovsky; Pablo Matar; Guillermo Mazzolini
Purpose: Interleukin-12 (IL-12) is an immunostimulatory cytokine with potent antitumor effects in several animal models. However, serious toxicity has been associated with its systemic application in humans. Gene transfer has emerged as a tool to specifically express therapeutic genes into the tumor/peritumoral milieu, thus avoiding systemic toxicity. The aim of this study was to analyze whether subtherapeutic doses of an adenovirus encoding IL-12 (AdIL-12) might synergize with low immunopotentiating doses of cyclophosphamide in the treatment of colorectal carcinoma. Experimental Design: The antitumor effect of combining a single low dose of cyclophosphamide with an intratumoral injection of AdIL-12 was evaluated in an in vivo murine colorectal carcinoma model. The immune responses achieved with different treatments were monitored, comparing the effect of combining both therapies with individual treatments. Results: The combined therapy induced a complete tumor regression in >50% of mice in a synergistic fashion, and it significantly prolonged their survival. This strategy was superior to each single treatment in reducing both peripheral and splenic CD4+CD25+Foxp3+ regulatory T cells, increasing the number of activated dendritic cells, and inducing IFN-γ-secreting CD4-positive T lymphocytes. Importantly, the combined treatment generated a powerful tumor-specific CTL response. Consistently, a significant reduction in IL-10 levels was found. Our data suggest that the combination of nontoxic doses of cyclophosphamide with AdIL-12 allows the generation of good antitumoral responses, thus avoiding undesired side effects of both agents. Conclusions: Our data strongly support the use of a combination of cyclophosphamide and AdIL-12 as a novel therapeutic strategy against colorectal carcinoma. (Clin Cancer Res 2009;15(23):7256–65)
International Journal of Cancer | 2009
Catalina Atorrasagasti; Mariana Malvicini; Jorge B. Aquino; Laura Alaniz; Mariana Garcia; Marcela Bolontrade; Manglio Rizzo; Osvaldo L. Podhajcer; Guillermo Mazzolini
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third leading cause of cancer‐related death worldwide. Current treatments are extremely disappointing. SPARC (Secreted protein, acidic and rich in cysteine) is a matricellular glycoprotein with differential expression in several tumors, including HCC, which significance remains unclear. We infected HCC cells (HepG2, Hep3B and Huh7) with an adenovirus expressing SPARC (AdsSPARC) to examine the role of SPARC expression on HCC cells and its effect on tumor aggressiveness. The in vitro HCC cells substrate‐dependent proliferation and cell cycle profile were unaffected; however, SPARC overexpression reduced HCC proliferation when cells were grown in spheroids. A mild induction of cellular apoptosis was observed upon SPARC overexpression. SPARC overexpression resulted in spheroid growth inhibition in vitro while no effects were found when recombinant SPARC was exogenously applied. Moreover, the clonogenic and migratory capabilities were largely decreased in SPARC‐overexpressing HCC cells, altogether suggesting a less aggressive HCC cell phenotype. Consistently, AdsSPARC‐transduced cells showed increased E‐cadherin expression and a concomitant decrease in N‐cadherin expression. Furthermore, SPARC overexpression was found to reduce HCC cell viability in response to 5‐FU‐based chemotherapy in vitro, partially through induction of apoptosis. In vivo experiments revealed that SPARC overexpression in HCC cells inhibited their tumorigenic capacity and increased animal survival through a mechanism that partially involves host macrophages. Our data suggest that SPARC overexpression in HCC cells results in a reduced tumorigenicity partially through the induction of mesenchymal‐to‐epithelial transition (MET). These evidences point to SPARC as a novel target for HCC treatment.
PLOS ONE | 2013
Catalina Atorrasagasti; Estanislao Peixoto; Jorge B. Aquino; Néstor Kippes; Mariana Malvicini; Laura Alaniz; Mariana Garcia; Flavia Piccioni; Esteban Fiore; Juan Bayo; Ramon Bataller; Elizabeth Guruceaga; Fernando J. Corrales; Osvaldo L. Podhajcer; Guillermo Mazzolini
Introduction Secreted Protein, Acidic and Rich in Cysteine (SPARC) is a matricellular protein involved in many biological processes and found over-expressed in cirrhotic livers. By mean of a genetic approach we herein provide evidence from different in vivo liver disease models suggesting a profibrogenic role for SPARC. Methods Two in vivo models of liver fibrosis, based on TAA administration and bile duct ligation, were developed on SPARC wild-type (SPARC+/+) and knock-out (SPARC−/−) mice. Hepatic SPARC expression was analyzed by qPCR. Fibrosis was assessed by Sirius Red staining, and the maturation state of collagen fibers was analyzed using polarized light. Necroinflammatory activity was evaluated by applying the Knodell score and liver inflammatory infiltration was characterized by immunohistochemistry. Hepatic stellate cell activation was assessed by α-SMA immunohistochemistry. In addition, pro-fibrogenic genes and inflammatory cytokines were measured by qPCR and/or ELISA. Liver gene expression profile was analyzed in SPARC−/− and SPARC+/+ mice using Affymetrix Mouse Gene ST 1.0 array. Results SPARC expression was found induced in fibrotic livers of mouse and human. SPARC−/− mice showed a reduction in the degree of inflammation, mainly CD4+ cells, and fibrosis. Consistently, collagen deposits and mRNA expression levels were decreased in SPARC−/− mice when compared to SPARC+/+ mice; in addition, MMP-2 expression was increased in SPARC−/− mice. A reduction in the number of activated myofibroblasts was observed. Moreover, TGF-β1 expression levels were down-regulated in the liver as well as in the serum of TAA-treated knock-out animals. Ingenuity Pathway Analysis (IPA) analysis suggested several gene networks which might involve protective mechanisms of SPARC deficiency against liver fibrogenesis and a better established machinery to repair DNA and detoxify from external chemical stimuli. Conclusions Overall our data suggest that SPARC plays a significant role in liver fibrogenesis. Interventions to inhibit SPARC expression are suggested as promising approaches for liver fibrosis treatment.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2011
Catalina Atorrasagasti; Jorge B. Aquino; Leonardo Hofman; Laura Alaniz; Mariana Malvicini; Mariana Garcia; Lorena Benedetti; Scott L. Friedman; Osvaldo L. Podhajcer; Guillermo Mazzolini
Liver fibrosis is an active process that involves changes in cell-cell and cell-extracellular matrix (ECM) interaction. Secreted protein, acidic and rich in cysteine (SPARC) is an ECM protein with many biological functions that is overexpressed in cirrhotic livers and upregulated in activated hepatic stellate cells (aHSCs). We have recently shown that SPARC downregulation ameliorates liver fibrosis in vivo. To uncover the cellular mechanisms involved, we have specifically knocked down SPARC in two aHSC lines [the CFSC-2G (rat) and the LX-2 (human)] and in primary cultured rat aHSCs. Transient downregulation of SPARC in hepatic stellate cells (HSCs) did not affect their proliferation and had only minor effects on apoptosis. However, SPARC knockdown increased HSC adhesion to fibronectin and significantly decreased their migration toward PDFG-BB and TGF-β(1). Interestingly, TGF-β(1) secretion by HSCs was reduced following SPARC small interfering RNA (siRNA) treatment, and preincubation with TGF-β(1) restored the migratory capacity of SPARC siRNA-treated cells through mechanisms partially independent from TGF-β(1)-mediated induction of SPARC expression; thus SPARC knockdown seems to exert its effects on HSCs partially through modulation of TGF-β(1) expression levels. Importantly, collagen-I mRNA expression was reduced in SPARC siRNA-transfected HSCs. Consistent with previous results, SPARC knockdown in aHSCs was associated with altered F-actin expression patterns and deregulation of key ECM and cell adhesion molecules, i.e., downregulation of N-cadherin and upregulation of E-cadherin. Our data together suggest that the upregulation of SPARC previously reported for aHSCs partially mediates profibrogenic activities of TGF-β(1) and PDGF-BB and identify SPARC as a potential therapeutic target for liver fibrosis.
Molecular Oncology | 2011
Mariana Malvicini; Mariana Ingolotti; Flavia Piccioni; Mariana Garcia; Juan Bayo; Catalina Atorrasagasti; Laura Alaniz; Jorge B. Aquino; Jaime A. Espinoza; Manuel Gidekel; O. Graciela Scharovsky; Pablo Matar; Guillermo Mazzolini
Immunotherapy‐based strategies for gastrointestinal carcinomas (GIC) have been exploited so far, but these approaches have to face strong mechanisms of immune escape induced by tumours. We previously demonstrated that sub‐therapeutic doses of an adenovirus expressing IL‐12 genes (AdIL‐12) mediated a potent antitumour effect against subcutaneous (s.c.) colorectal carcinomas (CRC) in mice pre‐treated with low doses of cyclophosphamide (Cy). In our study we used this combination to assess its impact on the immunosuppressive microenvironment. In s.c. CRC model we demonstrated that non‐responder mice failed to decrease Tregs in tumour, spleen and peripheral blood. Reconstitution of Tregs into tumour‐bearing mice treated with combined therapy abolished the antitumoural effect. In addition, Cy + AdIL‐12 modified Tregs functionality by inhibiting the in vitro secretion of IL‐10 and TGF‐β and their ability to inhibit dendritic cells activation. Combined treatment decreased the number of myeloid‐derived suppressor cells (MDSCs) in comparison to non‐treated mice and, interestingly, administration of Tregs restored splenic MDSCs population. Furthermore, combined therapy potently generated specific cytotoxic IFN‐γ‐secreting CD4+ T cells able to eradicate established CRC tumours after adoptive transfer. Finally, we evaluated the combination on disseminated CRC and pancreatic carcinoma (PC). Cy + AdIL‐12 were able to eradicate liver metastatic CRC (47%) and PC tumour nodules (40%) and to prolong animal survival. The results of this study support the hypothesis that Cy + AdIL‐12 might be a valid immunotherapeutic strategy for advanced GIC.
Journal of Biomedical Science | 2009
Pablo Matar; Laura Alaniz; Viviana R. Rozados; Jorge B. Aquino; Mariana Malvicini; Catalina Atorrasagasti; Manuel Gidekel; Marcelo Silva; O. Graciela Scharovsky; Guillermo Mazzolini
Increasing evidence suggests that immune responses are involved in the control of cancer and that the immune system can be manipulated in different ways to recognize and attack tumors. Progress in immune-based strategies has opened new therapeutic avenues using a number of techniques destined to eliminate malignant cells. In the present review, we overview current knowledge on the importance, successes and difficulties of immunotherapy in liver tumors, including preclinical data available in animal models and information from clinical trials carried out during the lasts years. This review shows that new options for the treatment of advanced liver tumors are urgently needed and that there is a ground for future advances in the field.
OncoImmunology | 2012
Mariana Malvicini; Laura Alaniz; Juan Bayo; Mariana Garcia; Flavia Piccioni; Esteban Fiore; Catalina Atorrasagasti; Jorge B. Aquino; Pablo Matar; Guillermo Mazzolini
The use of conventional cytotoxic agents at metronomic schedules, alone or in combination with targeted agents or immunotherapy, is being explored as a promising anticancer strategy. We previously reported a potent antitumor effect of a single low-dose cyclophosphamide and interleukin-12 (IL-12) gene therapy against advanced gastrointestinal carcinoma, in mice. Here, we assessed whether the delivery of IL-12 by gene therapy together with metronomic cyclophosphamide exerts antitumor effects in a murine model of colorectal carcinoma. This combination therapy was able, at least in part, to reverse immunosuppression, by decreasing the number of regulatory T cells (Tregs) as well as of splenic myeloid-derived suppressor cells (MDSCs). However, metronomic cyclophosphamide plus IL-12 gene therapy failed to increase the number of tumor-infiltrating T lymphocytes and, more importantly, to induce a specific antitumor immune response. With respect to this, cyclophosphamide at a single low dose displayed a superior anticancer profile than the same drug given at a metronomic schedule. Our results may have important implications in the design of new therapeutic strategies against colorectal carcinoma using cyclophosphamide in combination with immunotherapy.