Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan Bayo is active.

Publication


Featured researches published by Juan Bayo.


Glycobiology | 2012

Antitumor effects of hyaluronic acid inhibitor 4-methylumbelliferone in an orthotopic hepatocellular carcinoma model in mice

Flavia Piccioni; Mariana Malvicini; Mariana Garcia; Andrés Rodriguez; Catalina Atorrasagasti; Néstor Kippes; Ignacio T Piedra Buena; Manglio Rizzo; Juan Bayo; Jorge B. Aquino; Manuela Viola; Alberto Passi; Laura Alaniz; Guillermo Mazzolini

Liver cirrhosis is characterized by an excessive accumulation of extracellular matrix components, including hyaluronan (HA). In addition, cirrhosis is considered a pre-neoplastic disease for hepatocellular carcinoma (HCC). Altered HA biosynthesis is associated with cancer progression but its role in HCC is unknown. 4-Methylumbelliferone (4-MU), an orally available agent, is an HA synthesis inhibitor with anticancer properties. In this work, we used an orthotopic Hepa129 HCC model established in fibrotic livers induced by thioacetamide. We evaluated 4-MU effects on HCC cells and hepatic stellate cells (HSCs) in vitro by proliferation, apoptosis and cytotoxicity assays; tumor growth and fibrogenesis were also analyzed in vivo. Our results showed that treatment of HCC cells with 4-MU significantly reduced tumor cell proliferation and induced apoptosis, while primary cultured hepatocytes remained unaffected. 4-MU therapy reduced hepatic and systemic levels of HA. Tumors systemically treated with 4-MU showed the extensive areas of necrosis, inflammatory infiltrate and 2-3-fold reduced number of tumor satellites. No signs of toxicity were observed after 4-MU therapy. Animals treated with 4-MU developed a reduced fibrosis degree compared with controls (F1-2 vs F2-3, respectively). Importantly, 4-MU induced the apoptosis of HSCs in vitro and decreased the amount of activated HSCs in vivo. In conclusion, our results suggest a role for 4-MU as an anticancer agent for HCC associated with advanced fibrosis.


Molecular Pharmaceutics | 2011

Hepatocellular carcinoma cells and their fibrotic microenvironment modulate bone marrow-derived mesenchymal stromal cell migration in vitro and in vivo.

Mariana Garcia; Juan Bayo; Marcela Bolontrade; Leonardo Sganga; Mariana Malvicini; Laura Alaniz; Jorge B. Aquino; Esteban Fiore; Manglio Rizzo; Andrés Rodriguez; Alicia Lorenti; Oscar Andriani; Osvaldo L. Podhajcer; Guillermo Mazzolini

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third cause of cancer-related death. Fibrogenesis is an active process characterized by the production of several proinflammatory cytokines, chemokines and growth factors. It involves the activation of hepatic stellate cells (HSCs) which accumulate at the site of injury and are the main source of the extracellular matrix deposits. There are no curative treatments for advanced HCC, thus, new therapies are urgently needed. Mesenchymal stromal cells (MSCs) have the ability to migrate to sites of injury or to remodeling tissues after in vivo administration; however, in several cancer models they demonstrated limited efficacy to eradicate experimental tumors partially due to poor engraftment. Thus, the aim of this work was to analyze the capacity of human MSCs (hMSCs) to migrate and anchor to HCC tumors. We observed that HCC and HSCs, but not nontumoral stroma, produce factors that induce hMSC migration in vitro. Conditioned media (CM) generated from established HCC cell lines were found to induce higher levels of hMSC migration than CM derived from fresh patient tumor samples. In addition, after exposure to CM from HCC cells or HSCs, hMSCs demonstrated adhesion and invasion capability to endothelial cells, type IV collagen and fibrinogen. Consistently, these cells were found to increase metalloproteinase-2 activity. In vivo studies with subcutaneous and orthotopic HCC models indicated that intravenously infused hMSCs migrated to lungs, spleen and liver. Seven days post-hMSC infusion cells were located also in the tumor in both models, but the signal intensity was significantly higher in orthotopic than in subcutaneous model. Interestingly, when orthotopic HCC tumors where established in noncirrhotic or cirrhotic livers, the amount of hMSCs localized in the liver was higher in comparison with healthy animals. A very low signal was found in lungs and spleens, indicating that liver tumors are able to recruit them at high efficiency. Taken together our results indicate that HCC and HSC cells produce factors that efficiently induce hMSC migration toward tumor microenvironment in vitro and in vivo and make MSCs candidates for cell-based therapeutic strategies to hepatocellular carcinoma associated with fibrosis.


PLOS ONE | 2013

Lack of the matricellular protein SPARC (secreted protein, acidic and rich in cysteine) attenuates liver fibrogenesis in mice.

Catalina Atorrasagasti; Estanislao Peixoto; Jorge B. Aquino; Néstor Kippes; Mariana Malvicini; Laura Alaniz; Mariana Garcia; Flavia Piccioni; Esteban Fiore; Juan Bayo; Ramon Bataller; Elizabeth Guruceaga; Fernando J. Corrales; Osvaldo L. Podhajcer; Guillermo Mazzolini

Introduction Secreted Protein, Acidic and Rich in Cysteine (SPARC) is a matricellular protein involved in many biological processes and found over-expressed in cirrhotic livers. By mean of a genetic approach we herein provide evidence from different in vivo liver disease models suggesting a profibrogenic role for SPARC. Methods Two in vivo models of liver fibrosis, based on TAA administration and bile duct ligation, were developed on SPARC wild-type (SPARC+/+) and knock-out (SPARC−/−) mice. Hepatic SPARC expression was analyzed by qPCR. Fibrosis was assessed by Sirius Red staining, and the maturation state of collagen fibers was analyzed using polarized light. Necroinflammatory activity was evaluated by applying the Knodell score and liver inflammatory infiltration was characterized by immunohistochemistry. Hepatic stellate cell activation was assessed by α-SMA immunohistochemistry. In addition, pro-fibrogenic genes and inflammatory cytokines were measured by qPCR and/or ELISA. Liver gene expression profile was analyzed in SPARC−/− and SPARC+/+ mice using Affymetrix Mouse Gene ST 1.0 array. Results SPARC expression was found induced in fibrotic livers of mouse and human. SPARC−/− mice showed a reduction in the degree of inflammation, mainly CD4+ cells, and fibrosis. Consistently, collagen deposits and mRNA expression levels were decreased in SPARC−/− mice when compared to SPARC+/+ mice; in addition, MMP-2 expression was increased in SPARC−/− mice. A reduction in the number of activated myofibroblasts was observed. Moreover, TGF-β1 expression levels were down-regulated in the liver as well as in the serum of TAA-treated knock-out animals. Ingenuity Pathway Analysis (IPA) analysis suggested several gene networks which might involve protective mechanisms of SPARC deficiency against liver fibrogenesis and a better established machinery to repair DNA and detoxify from external chemical stimuli. Conclusions Overall our data suggest that SPARC plays a significant role in liver fibrogenesis. Interventions to inhibit SPARC expression are suggested as promising approaches for liver fibrosis treatment.


Molecular Oncology | 2011

Reversal of gastrointestinal carcinoma-induced immunosuppression and induction of antitumoural immunity by a combination of cyclophosphamide and gene transfer of IL-12

Mariana Malvicini; Mariana Ingolotti; Flavia Piccioni; Mariana Garcia; Juan Bayo; Catalina Atorrasagasti; Laura Alaniz; Jorge B. Aquino; Jaime A. Espinoza; Manuel Gidekel; O. Graciela Scharovsky; Pablo Matar; Guillermo Mazzolini

Immunotherapy‐based strategies for gastrointestinal carcinomas (GIC) have been exploited so far, but these approaches have to face strong mechanisms of immune escape induced by tumours. We previously demonstrated that sub‐therapeutic doses of an adenovirus expressing IL‐12 genes (AdIL‐12) mediated a potent antitumour effect against subcutaneous (s.c.) colorectal carcinomas (CRC) in mice pre‐treated with low doses of cyclophosphamide (Cy). In our study we used this combination to assess its impact on the immunosuppressive microenvironment. In s.c. CRC model we demonstrated that non‐responder mice failed to decrease Tregs in tumour, spleen and peripheral blood. Reconstitution of Tregs into tumour‐bearing mice treated with combined therapy abolished the antitumoural effect. In addition, Cy + AdIL‐12 modified Tregs functionality by inhibiting the in vitro secretion of IL‐10 and TGF‐β and their ability to inhibit dendritic cells activation. Combined treatment decreased the number of myeloid‐derived suppressor cells (MDSCs) in comparison to non‐treated mice and, interestingly, administration of Tregs restored splenic MDSCs population. Furthermore, combined therapy potently generated specific cytotoxic IFN‐γ‐secreting CD4+ T cells able to eradicate established CRC tumours after adoptive transfer. Finally, we evaluated the combination on disseminated CRC and pancreatic carcinoma (PC). Cy + AdIL‐12 were able to eradicate liver metastatic CRC (47%) and PC tumour nodules (40%) and to prolong animal survival. The results of this study support the hypothesis that Cy + AdIL‐12 might be a valid immunotherapeutic strategy for advanced GIC.


OncoImmunology | 2012

Single low-dose cyclophosphamide combined with interleukin-12 gene therapy is superior to a metronomic schedule in inducing immunity against colorectal carcinoma in mice

Mariana Malvicini; Laura Alaniz; Juan Bayo; Mariana Garcia; Flavia Piccioni; Esteban Fiore; Catalina Atorrasagasti; Jorge B. Aquino; Pablo Matar; Guillermo Mazzolini

The use of conventional cytotoxic agents at metronomic schedules, alone or in combination with targeted agents or immunotherapy, is being explored as a promising anticancer strategy. We previously reported a potent antitumor effect of a single low-dose cyclophosphamide and interleukin-12 (IL-12) gene therapy against advanced gastrointestinal carcinoma, in mice. Here, we assessed whether the delivery of IL-12 by gene therapy together with metronomic cyclophosphamide exerts antitumor effects in a murine model of colorectal carcinoma. This combination therapy was able, at least in part, to reverse immunosuppression, by decreasing the number of regulatory T cells (Tregs) as well as of splenic myeloid-derived suppressor cells (MDSCs). However, metronomic cyclophosphamide plus IL-12 gene therapy failed to increase the number of tumor-infiltrating T lymphocytes and, more importantly, to induce a specific antitumor immune response. With respect to this, cyclophosphamide at a single low dose displayed a superior anticancer profile than the same drug given at a metronomic schedule. Our results may have important implications in the design of new therapeutic strategies against colorectal carcinoma using cyclophosphamide in combination with immunotherapy.


Cancer Immunology, Immunotherapy | 2011

Low molecular weight hyaluronan preconditioning of tumor-pulsed dendritic cells increases their migratory ability and induces immunity against murine colorectal carcinoma.

Laura Alaniz; Manglio Rizzo; Mariana Garcia; Flavia Piccioni; Jorge B. Aquino; Mariana Malvicini; Catalina Atorrasagasti; Juan Bayo; Itziar Echeverria; Pablo Sarobe; Guillermo Mazzolini

We have recently shown that systemic administration of low molecular weight hyaluronan (LMW HA) significantly reduces colorectal carcinoma (CRC) growth in vivo. The elicited response is partially mediated by activated dendritic cells (DC). To potentiate the ability of DC loaded with whole tumor lysate (DC/TL) to induce immunity against CRC in mice, we aimed to study the effects of preconditioning DC with LMW HA for therapeutic vaccination. LMW HA improved maturation of ex vivo generated DC, increased IL-12, decreased IL-10 production, and enhanced a MLR activity in vitro. Although TNF-α showed a similar capacity to mature DC, preconditioning of DC/TL with LMW HA increased their ability to migrate in vitro toward CCL19 and CCL-21 in a CD44- and a TLR4-independent manner; this effect was superior to Poly(I:C), LPS, or TNF-α and partially associated with an increase in the expression of CCR7. Importantly, LMW HA dramatically enhanced the in vivo DC recruitment to tumor-regional lymph nodes. When these LMW HA-treated CRC tumor lysate-pulsed DC (DC/TL/LMW HA) were administered to tumor-bearing mice, a potent antitumor response was observed when compared to DC pulsed with tumor lysate alone and matured with TNF-α. Then, we showed that splenocytes isolated from animals treated with DC/TL/LMW HA presented a higher proliferative capacity, increased IFN-γ production, and secreted lower levels of the immunosuppressive IL-10. Besides, increased specific CTL response was observed in DC/TL/LMW HA-treated animals and induced long-term protection against tumor recurrence. Our data show that LMW HA is superior to other agents at inducing DC migration; therefore, LMW HA could be considered a new adjuvant candidate in the preparation of DC-based anticancer vaccines with potent immunostimulatory properties.


PLOS ONE | 2014

Increased Migration of Human Mesenchymal Stromal Cells by Autocrine Motility Factor (AMF) Resulted in Enhanced Recruitment towards Hepatocellular Carcinoma

Juan Bayo; Esteban Fiore; Jorge B. Aquino; Mariana Malvicini; Manglio Rizzo; Estanislao Peixoto; Oscar Andriani; Laura Alaniz; Flavia Piccioni; Marcela Bolontrade; Osvaldo L. Podhajcer; Mariana Garcia; Guillermo Mazzolini

Background and Aims Several reports described the migration of human mesenchymal stromal cells (MSCs) towards tumor-released factors. Autocrine motility factor (AMF) is produced by several tumors including hepatocellular carcinoma (HCC). The aim of this study was to analyze AMF involvement on MSC migration towards human HCC. Methods Production of AMF by HCC tumors was evaluated by western analysis. The effects of AMF on MSCs from different sources (bone marrow, adipose tissue and perivascular cells from umbilical cord) were analyzed using in vitro migration assay; metalloproteinase 2 (MMP2) activity and expression of critical genes were studied by zymography and qRT-PCR, respectively. To assess AMF involvement on the in vivo MSC migration, noninvasive fluorescence imaging was performed. To test the effect of AMF-primed MSCs on tumor development, in vitro proliferation and spheroids growth and in vivo tumor volume were evaluated. Results AMF produced by HCC was found to induce migration of different MSCs in vitro and to enhance their MMP2 activity. Stimulation of MSCs with recombinant AMF (rAMF) also induced the in vitro adhesion to endothelial cells in coincidence with changes in the expression levels of MMP3, AMF receptor, caveolin-1, and -2 and GDI-2. Importantly, stimulation of MSCs with rAMF increased the in vivo migration of MSCs towards experimental HCC tumors. AMF-priming of MSCs did not induce a pro-tumorigenic effect on HCC cells neither in vivo nor in vitro. Conclusion AMF plays a role in MSC recruitment towards HCC. However, its ability to increase MSC migration to HCC for therapeutic purposes merits further evaluation.


Glycobiology | 2015

4-Methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis

Flavia Piccioni; Esteban Fiore; Juan Bayo; Catalina Atorrasagasti; Estanislao Peixoto; Manglio Rizzo; Mariana Malvicini; Irene Tirado-González; Mariana Garcia; Laura Alaniz; Guillermo Mazzolini

Cirrhosis is characterized by an excessive accumulation of extracellular matrix components including hyaluronic acid (HA) and is widely considered a preneoplastic condition for hepatocellular carcinoma (HCC). 4-Methylumbelliferone (4MU) is an inhibitor of HA synthesis and has anticancer activity in an orthotopic HCC model with underlying fibrosis. Our aim was to explore the effects of HA inhibition by 4MU orally administered on tumor microenvironment. Hepa129 tumor cells were inoculated orthotopically in C3H/HeJ male mice with fibrosis induced by thioacetamide. Mice were orally treated with 4MU. The effects of 4MU on angiogenesis were evaluated by immunostaining of CD31 and quantification of proangiogenic factors (vascular endothelial growth factor, VEGF, interleukin-6, IL-6 and C-X-C motif chemokine 12, CXCL12). IL-6 was also quantified in Hepa129 cells in vitro after treatment with 4MU. Migration of endothelial cells and tube formation were also analyzed. As a result, 4MU treatment decreases tumor growth and increased animal survival. Systemic levels of VEGF were significantly inhibited in 4MU-treated mice. Expression of CD31 was reduced after 4MU therapy in liver parenchyma in comparison with control group. In addition, mRNA expression and protein levels of IL-6 and VEGF were inhibited both in tumor tissue and in nontumoral liver parenchyma. Interestingly, IL-6 production was dramatically reduced in Kupffer cells isolated from 4MU-treated mice, and in Hepa129 cells in vitro. Besides, 4MU was able to inhibit endothelial cell migration and tube formation. In conclusion, 4MU has antitumor activity in vivo and its mechanisms of action involve an inhibition of angiogenesis and IL-6 production. 4MU is an orally available molecule with potential for HCC treatment.


Liver International | 2014

The therapeutic potential of bone marrow‐derived mesenchymal stromal cells on hepatocellular carcinoma

Juan Bayo; Mariano Marrodán; Jorge B. Aquino; Marcelo Silva; Mariana Garcia; Guillermo Mazzolini

Mesenchymal stromal cells (MSCs) are more often obtained from adult and extraembryonic tissues, with the latter sources being likely better from a therapeutic perspective. MSCs show tropism towards inflamed or tumourigenic sites. Mechanisms involved in MSC recruitment into tumours are comprehensively analysed, including chemoattractant signalling axes, endothelial adhesion and transmigration. In addition, signals derived from hepatocellular carcinoma (HCC) tumour microenvironment and their influence in MSC tropism and tumour recruitment are dissected, as well as the present controversy regarding their influence on tumour growth and/or metastasis. Finally, evidences available on the use of MSCs and other selected progenitor/stem cells as vehicles of antitumourigenic genes are discussed. A better knowledge of the mechanisms involved in progenitor/stem cell recruitment to HCC tumours is proposed in order to enhance their tumour targeting which may result in improvements in cell‐based gene therapy strategies.


PLOS ONE | 2014

Low Molecular Weight Hyaluronan-Pulsed Human Dendritic Cells Showed Increased Migration Capacity and Induced Resistance to Tumor Chemoattraction

Manglio Rizzo; Juan Bayo; Flavia Piccioni; Mariana Malvicini; Esteban Fiore; Estanislao Peixoto; Mariana Garcia; Jorge B. Aquino; Ariel Gonzalez Campaña; Gustavo Podestá; Marcelo Terres; Oscar Andriani; Laura Alaniz; Guillermo Mazzolini

We have shown that ex vivo pre-conditioning of bone marrow-derived dendritic cells (DC) with low molecular weight hyaluronan (LMW HA) induces antitumor immunity against colorectal carcinoma (CRC) in mice. In the present study we investigated the effects of LMW HA priming on human-tumor-pulsed monocytes-derived dendritic cells (DC/TL) obtained from healthy donors and patients with CRC. LMW HA treatment resulted in an improved maturation state of DC/TL and an enhanced mixed leucocyte reaction activity in vivo. Importantly, pre-conditioning of DC/TL with LMW HA increased their ability to migrate and reduced their attraction to human tumor derived supernatants. These effects were associated with increased CCR7 expression levels in DC. Indeed, a significant increase in migratory response toward CCL21 was observed in LMW HA primed tumor-pulsed monocyte-derived dendritic cells (DC/TL/LMW HA) when compared to LWM HA untreated cells (DC/TL). Moreover, LMW HA priming modulated other mechanisms implicated in DC migration toward lymph nodes such as the metalloproteinase activity. Furthermore, it also resulted in a significant reduction in DC migratory capacity toward tumor supernatant and IL8 in vitro. Consistently, LMW HA dramatically enhanced in vivo DC recruitment to tumor-regional lymph nodes and reduced DC migration toward tumor tissue. This study shows that LMW HA –a poorly immunogenic molecule- represents a promising candidate to improve human DC maturation protocols in the context of DC-based vaccines development, due to its ability to enhance their immunogenic properties as well as their migratory capacity toward lymph nodes instead of tumors.

Collaboration


Dive into the Juan Bayo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge