Gunilla Holmlund
Linköping University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gunilla Holmlund.
Current Biology | 2008
Oscar Lao; Timothy Lu; Michael Nothnagel; Olaf Junge; Sandra Freitag-Wolf; Amke Caliebe; Miroslava Balascakova; Jaume Bertranpetit; Laurence A. Bindoff; David Comas; Gunilla Holmlund; Anastasia Kouvatsi; Milan Macek; Isabelle Mollet; Walther Parson; Jukka U. Palo; Rafał Płoski; Antti Sajantila; Adriano Tagliabracci; Ulrik Gether; Thomas Werge; Fernando Rivadeneira; Albert Hofman; André G. Uitterlinden; Christian Gieger; Heinz-Erich Wichmann; Andreas Rüther; Stefan Schreiber; Christian Becker; Peter Nürnberg
Understanding the genetic structure of the European population is important, not only from a historical perspective, but also for the appropriate design and interpretation of genetic epidemiological studies. Previous population genetic analyses with autosomal markers in Europe either had a wide geographic but narrow genomic coverage [1, 2], or vice versa [3-6]. We therefore investigated Affymetrix GeneChip 500K genotype data from 2,514 individuals belonging to 23 different subpopulations, widely spread over Europe. Although we found only a low level of genetic differentiation between subpopulations, the existing differences were characterized by a strong continent-wide correlation between geographic and genetic distance. Furthermore, mean heterozygosity was larger, and mean linkage disequilibrium smaller, in southern as compared to northern Europe. Both parameters clearly showed a clinal distribution that provided evidence for a spatial continuity of genetic diversity in Europe. Our comprehensive genetic data are thus compatible with expectations based upon European population history, including the hypotheses of a south-north expansion and/or a larger effective population size in southern than in northern Europe. By including the widely used CEPH from Utah (CEU) samples into our analysis, we could show that these individuals represent northern and western Europeans reasonably well, thereby confirming their assumed regional ancestry.
Current Biology | 2009
Helena Malmström; M. Thomas P. Gilbert; Mark G. Thomas; Mikael Brandström; Jan Storå; Petra Molnar; Pernille K. Andersen; Christian Bendixen; Gunilla Holmlund; Anders Götherström
The driving force behind the transition from a foraging to a farming lifestyle in prehistoric Europe (Neolithization) has been debated for more than a century [1-3]. Of particular interest is whether population replacement or cultural exchange was responsible [3-5]. Scandinavia holds a unique place in this debate, for it maintained one of the last major hunter-gatherer complexes in Neolithic Europe, the Pitted Ware culture [6]. Intriguingly, these late hunter-gatherers existed in parallel to early farmers for more than a millennium before they vanished some 4,000 years ago [7, 8]. The prolonged coexistence of the two cultures in Scandinavia has been cited as an argument against population replacement between the Mesolithic and the present [7, 8]. Through analysis of DNA extracted from ancient Scandinavian human remains, we show that people of the Pitted Ware culture were not the direct ancestors of modern Scandinavians (including the Saami people of northern Scandinavia) but are more closely related to contemporary populations of the eastern Baltic region. Our findings support hypotheses arising from archaeological analyses that propose a Neolithic or post-Neolithic population replacement in Scandinavia [7]. Furthermore, our data are consistent with the view that the eastern Baltic represents a genetic refugia for some of the European hunter-gatherer populations.
European Journal of Human Genetics | 2006
Andreas O. Karlsson; Thomas Wallerström; Anders Götherström; Gunilla Holmlund
Sixteen Y-chromosomal binary markers and nine Y-chromosome short tandem repeats were analyzed in a total of 383 unrelated males from seven different Swedish regions, one Finnish region and a Swedish Saami population in order to address questions about the origin and genetic structure of the present day population in Sweden. Haplogroup I1a* was found to be the most common haplogroup in Sweden and accounted, together with haplogroups R1b3, R1a1 and N3, for over 80% of the male lineages. Within Sweden, a minor stratification was found in which the northern region Västerbotten differed significantly (P<0.05) from the other Swedish regions. A flow of N3 chromosomes into Västerbotten mainly from Saami and Finnish populations could be one explanation for this stratification. However, the demographic history of Västerbotten involving a significant male absence during the 17th Century may also have had a large impact. Immigration of young men from elsewhere to Värmland at the same time, can be responsible for a similar deviation with I1a* haplotypes. Y chromosomes within haplogroup R1b3 were found to have the highest STR variation among all haplogroups and could thus be considered to be one of the earliest major male lineages present in Sweden. Regional haplotype variation, within R1b3, also showed a difference between two regions in the south of Sweden. This can also be traced from historical time and is visible in archaeological material. Overall this Y chromosome study provides interesting information about the genetic patterns and demographic events in the Swedish population.
BMC Evolutionary Biology | 2010
Helena Malmström; Anna Linderholm; Kerstin Lidén; Jan Storå; Petra Molnar; Gunilla Holmlund; Mattias Jakobsson; Anders Götherström
BackgroundGenes and culture are believed to interact, but it has been difficult to find direct evidence for the process. One candidate example that has been put forward is lactase persistence in adulthood, i.e. the ability to continue digesting the milk sugar lactose after childhood, facilitating the consumption of raw milk. This genetic trait is believed to have evolved within a short time period and to be related with the emergence of sedentary agriculture.ResultsHere we investigate the frequency of an allele (-13910*T) associated with lactase persistence in a Neolithic Scandinavian population. From the 14 individuals originally examined, 10 yielded reliable results. We find that the T allele frequency was very low (5%) in this Middle Neolithic hunter-gatherer population, and that the frequency is dramatically different from the extant Swedish population (74%).ConclusionsWe conclude that this difference in frequency could not have arisen by genetic drift and is either due to selection or, more likely, replacement of hunter-gatherer populations by sedentary agriculturalists.
Gene Analysis Techniques | 1988
Bertil Lindblom; Gunilla Holmlund
This paper describes a method for isolation of DNA from blood samples involving a rapid chemical disintegration of proteins with 8 M urea and with a minimum of exposure to phenol. The DNA is further desalted and purified on Sephadex G-25 prepacked disposable columns. DNA isolated in this way was pure enough to be immediately cleaved by restriction enzymes.
Forensic Science International-genetics | 2008
Andreas O. Tillmar; Petter Mostad; Thore Egeland; Bertil Lindblom; Gunilla Holmlund; Kerstin Montelius
X-chromosomal short tandem repeats (X-STR) have proven to be informative and useful in complex relationship testing. The main feature of X-STR markers, compared to autosomal forensic markers, is that all loci are located on the same chromosome. Thus, linkage and linkage disequilibrium may occur. The aim of this work was to study population genetic parameters of eight X-STR markers, located in four linkage groups. We present haplotype frequencies, based on 718 Swedish males, for the four linkage groups included in the Argus X-8 kit. Forensic efficiency parameters have been calculated as well as the allelic association between the tested markers for detection of linkage disequilibrium. To study the occurrences of recombination between the loci, both Swedish and Somali families were typed. A mathematical model for the estimation of recombination frequencies is presented and applied on the family samples. Our study showed that the tested markers all have highly informative forensic values and that there is a significant degree of linkage disequilibrium between the STR markers within the four linkage groups. Furthermore, based on the tested families, we also demonstrated that two of the linkage groups are partially linked. A consequence of these findings is that both linkage and linkage disequilibrium should be accounted for when producing likelihood ratios in relationship testing with X-STR markers.
PLOS ONE | 2013
Andreas O. Tillmar; Barbara Dell'Amico; Jenny Welander; Gunilla Holmlund
Species identification can be interesting in a wide range of areas, for example, in forensic applications, food monitoring and in archeology. The vast majority of existing DNA typing methods developed for species determination, mainly focuses on a single species source. There are, however, many instances where all species from mixed sources need to be determined, even when the species in minority constitutes less than 1 % of the sample. The introduction of next generation sequencing opens new possibilities for such challenging samples. In this study we present a universal deep sequencing method using 454 GS Junior sequencing of a target on the mitochondrial gene 16S rRNA. The method was designed through phylogenetic analyses of DNA reference sequences from more than 300 mammal species. Experiments were performed on artificial species-species mixture samples in order to verify the method’s robustness and its ability to detect all species within a mixture. The method was also tested on samples from authentic forensic casework. The results showed to be promising, discriminating over 99.9 % of mammal species and the ability to detect multiple donors within a mixture and also to detect minor components as low as 1 % of a mixed sample.
Forensic Science International-genetics | 2008
Kerstin Montelius; Andreas O. Karlsson; Gunilla Holmlund
The modern Swedish population is a mixture of people that originate from different parts of the world. This is also the truth for the clients participating in the paternity cases investigated at the department. Calculations based on a Swedish frequency database only, could give us overestimated figures of probability and power of exclusion in cases including clients with a genetic background other than Swedish. Here, we describe allele frequencies regarding the markers in the Identifiler-kit. We have compared three sets of population samples; Swedish, European and non-European to investigate how these three groups of population samples differ. Also, all three population sets were compared to data reported from other European and non-European populations. Swedish allele frequencies for the 15 autosomal STRs included in the Identifiler kit were obtained from unrelated blood donors with Swedish names. The European and non-European frequencies were based on DNA-profiles of alleged fathers from our paternity cases in 2005 and 2006.
Forensic Science International-genetics | 2011
Andreas O. Tillmar; Thore Egeland; Bertil Lindblom; Gunilla Holmlund; Petter Mostad
X-chromosomal markers in forensic genetics have become more widely used during recent years, particularly for relationship testing. Linkage and linkage disequilibrium (LD) must typically be accounted for when using close X-chromosomal markers. Thus, when producing the weight-of-evidence, given by a DNA-analysis with markers that are linked, the normally used product rule is invalid. Here we present an implementation of an efficient model for calculating likelihood ratios (LRs) with markers on the X-chromosome which are linked and in LD. Furthermore, the model was applied on several cases based on data from the eight X-chromosomal loci included in the Mentype(®) Argus X-8 (Biotype). Using a simulation approach we showed that the use of X-chromosome data can offer valuable information for choosing between the alternatives in each of the cases we studied, and that the LR can be high in several cases. We demonstrated that when linkage and LD were disregarded, as opposed to taken into account, the difference in calculated LRs could be considerable. When these differences were large, the estimated haplotype frequencies often had a strong impact and we present a method to estimate haplotype frequencies. Our conclusion is that linkage and LD should be accounted for when using the tested set of markers, and the used model is an efficient way of doing so.
BMC Evolutionary Biology | 2008
Helena Malmström; Carles Vilà; M. Thomas P. Gilbert; Jan Storå; Gunilla Holmlund; Anders Götherström
BackgroundGeographic distribution of the genetic diversity in domestic animals, particularly mitochondrial DNA, has often been used to infer centers of domestication. The underlying presumption is that phylogeographic patterns among domesticates were established during, or shortly after the domestication. Human activities are assumed not to have altered the haplogroup frequencies to any great extent. We studied this hypothesis by analyzing 24 mtDNA sequences in ancient Scandinavian dogs. Breeds originating in northern Europe are characterized by having a high frequency of mtDNA sequences belonging to a haplogroup rare in other populations (HgD). This has been suggested to indicate a possible origin of the haplogroup (perhaps even a separate domestication) in central or northern Europe.ResultsThe sequences observed in the ancient samples do not include the haplogroup indicative for northern European breeds (HgD). Instead, several of them correspond to haplogroups that are uncommon in the region today and that are supposed to have Asian origin.ConclusionWe find no evidence for local domestication. We conclude that interpretation of the processes responsible for current domestic haplogroup frequencies should be carried out with caution if based only on contemporary data. They do not only tell their own story, but also that of humans.