Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gunther Kern is active.

Publication


Featured researches published by Gunther Kern.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Avibactam is a covalent, reversible, non-β-lactam β-lactamase inhibitor.

David E. Ehmann; Haris Jahić; Philip L. Ross; Rong-Fang Gu; Jun Hu; Gunther Kern; Grant K. Walkup; Stewart L. Fisher

Avibactam is a β-lactamase inhibitor that is in clinical development, combined with β-lactam partners, for the treatment of bacterial infections comprising Gram-negative organisms. Avibactam is a structural class of inhibitor that does not contain a β-lactam core but maintains the capacity to covalently acylate its β-lactamase targets. Using the TEM-1 enzyme, we characterized avibactam inhibition by measuring the on-rate for acylation and the off-rate for deacylation. The deacylation off-rate was 0.045 min−1, which allowed investigation of the deacylation route from TEM-1. Using NMR and MS, we showed that deacylation proceeds through regeneration of intact avibactam and not hydrolysis. Other than TEM-1, four additional clinically relevant β-lactamases were shown to release intact avibactam after being acylated. We showed that avibactam is a covalent, slowly reversible inhibitor, which is a unique mechanism of inhibition among β-lactamase inhibitors.


Nature | 2007

Exploitation of structural and regulatory diversity in glutamate racemases

Tomas Lundqvist; Stewart L. Fisher; Gunther Kern; Rutger H. A. Folmer; Yafeng Xue; D. Trevor Newton; Thomas A. Keating; Richard A. Alm; Boudewijn L. M. de Jonge

Glutamate racemase is an enzyme essential to the bacterial cell wall biosynthesis pathway, and has therefore been considered as a target for antibacterial drug discovery. We characterized the glutamate racemases of several pathogenic bacteria using structural and biochemical approaches. Here we describe three distinct mechanisms of regulation for the family of glutamate racemases: allosteric activation by metabolic precursors, kinetic regulation through substrate inhibition, and d-glutamate recycling using a d-amino acid transaminase. In a search for selective inhibitors, we identified a series of uncompetitive inhibitors specifically targeting Helicobacter pylori glutamate racemase that bind to a cryptic allosteric site, and used these inhibitors to probe the mechanistic and dynamic features of the enzyme. These structural, kinetic and mutational studies provide insight into the physiological regulation of these essential enzymes and provide a basis for designing narrow-spectrum antimicrobial agents.


Toxicological Sciences | 2014

Early Prediction of Polymyxin-Induced Nephrotoxicity With Next-Generation Urinary Kidney Injury Biomarkers

Natalie Keirstead; Matthew Wagoner; Patricia Bentley; Marie Blais; Crystal Brown; Letitia Cheatham; Paul Ciaccio; Yvonne P. Dragan; Douglas Ferguson; Jim Fikes; Melanie Galvin; Anshul Gupta; Michael R. Hale; Nakpangi Johnson; Wenli Luo; Frank McGrath; Mark Pietras; Sally A. Price; Abhishek Sathe; Jennifer C. Sasaki; Debra Snow; Robert L. Walsky; Gunther Kern

Despite six decades of clinical experience with the polymyxin class of antibiotics, their dose-limiting nephrotoxicity remains difficult to predict due to a paucity of sensitive biomarkers. Here, we evaluate the performance of standard of care and next-generation biomarkers of renal injury in the detection and monitoring of polymyxin-induced acute kidney injury in male Han Wistar rats using colistin (polymyxin E) and a polymyxin B (PMB) derivative with reduced nephrotoxicity, PMB nonapeptide (PMBN). This study provides the first histopathological and biomarker analysis of PMBN, an important test of the hypothesis that fatty acid modifications and charge reductions in polymyxins can reduce their nephrotoxicity. The results indicate that alterations in a panel of urinary kidney injury biomarkers can be used to monitor histopathological injury, with Kim-1 and α-GST emerging as the most sensitive biomarkers outperforming clinical standards of care, serum or plasma creatinine and blood urea nitrogen. To enable the prediction of polymyxin-induced nephrotoxicity, an in vitro cytotoxicity assay was employed using human proximal tubule epithelial cells (HK-2). Cytotoxicity data in these HK-2 cells correlated with the renal toxicity detected via safety biomarker data and histopathological evaluation, suggesting that in vitro and in vivo methods can be incorporated within a screening cascade to prioritize polymyxin class analogs with more favorable renal toxicity profiles.


Scientific Reports | 2015

Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases.

Gregory S. Basarab; Gunther Kern; John McNulty; John P. Mueller; Kenneth Lawrence; Karthick Vishwanathan; Richard A. Alm; Kevin Barvian; Peter Doig; Vincent Galullo; Humphrey Gardner; Madhusudhan Gowravaram; Michael D. Huband; Amy Kimzey; Marshall Morningstar; Amy Kutschke; Sushmita D. Lahiri; Manos Perros; Renu Singh; Virna J. A. Schuck; Ruben Tommasi; Grant K. Walkup; Joseph V. Newman

With the diminishing effectiveness of current antibacterial therapies, it is critically important to discover agents that operate by a mechanism that circumvents existing resistance. ETX0914, the first of a new class of antibacterial agent targeted for the treatment of gonorrhea, operates by a novel mode-of-inhibition against bacterial type II topoisomerases. Incorporating an oxazolidinone on the scaffold mitigated toxicological issues often seen with topoisomerase inhibitors. Organisms resistant to other topoisomerase inhibitors were not cross-resistant with ETX0914 nor were spontaneous resistant mutants to ETX0914 cross-resistant with other topoisomerase inhibitor classes, including the widely used fluoroquinolone class. Preclinical evaluation of ETX0914 pharmacokinetics and pharmacodynamics showed distribution into vascular tissues and efficacy in a murine Staphylococcus aureus infection model that served as a surrogate for predicting efficacious exposures for the treatment of Neisseria gonorrhoeae infections. A wide safety margin to the efficacious exposure in toxicological evaluations supported progression to Phase 1. Dosing ETX0914 in human volunteers showed sufficient exposure and minimal adverse effects to expect a highly efficacious anti-gonorrhea therapy.


Journal of Medicinal Chemistry | 2015

Discovery of Novel DNA Gyrase Inhibiting Spiropyrimidinetriones: Benzisoxazole Fusion with N-Linked Oxazolidinone Substituents Leading to a Clinical Candidate (ETX0914).

Gregory S. Basarab; Peter Doig; Vincent Galullo; Gunther Kern; Amy Kimzey; Amy Kutschke; Joseph P. Newman; Marshall Morningstar; John E. Mueller; Linda G. Otterson; Karthick Vishwanathan; Fei Zhou; Madhusudhan Gowravaram

A novel class of bacterial type-II topoisomerase inhibitor displaying a spiropyrimidinetrione architecture fused to a benzisoxazole scaffold shows potent activity against Gram-positive and fastidious Gram-negative bacteria. Here, we describe a series of N-linked oxazolidinone substituents on the benzisoxazole that improve upon the antibacterial activity of initially described compounds of the class, show favorable PK properties, and demonstrate efficacy in an in vivo Staphylococcus aureus infection model. Inhibition of the topoisomerases DNA gyrase and topoisomerase IV from both Gram-positive and a Gram-negative organisms was demonstrated. Compounds showed a clean in vitro toxicity profile, including no genotoxicity and no bone marrow toxicity at the highest evaluated concentrations or other issues that have been problematic for some fluoroquinolones. Compound 1u was identified for advancement into human clinical trials for treatment of uncomplicated gonorrhea based on a variety of beneficial attributes including the potent activity and the favorable safety profile.


Journal of Biological Chemistry | 2015

Inhibition of Neisseria gonorrhoeae type II Topoisomerases by the Novel Spiropyrimidinetrione AZD0914

Gunther Kern; Tiffany Palmer; David E. Ehmann; Adam B. Shapiro; Beth Andrews; Gregory S. Basarab; Peter Doig; Jun Fan; Ning Gao; Scott D. Mills; John E. Mueller; Shubha Sriram; Jason Thresher; Grant K. Walkup

Background: Inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and TopoIV by the antibacterial spiropyrimidinetrione AZD0914 was investigated. Results: AZD0914 stabilized the gyrase-DNA complex with double strand DNA cleavage, retaining potency in a fluoroquinolone-resistant mutant, with little inhibition of human type II topoisomerases. Conclusion: AZD0914 displays mechanistic differences from fluoroquinolones. Significance: AZD0914 has the potential to combat drug-resistant gonorrhea. We characterized the inhibition of Neisseria gonorrhoeae type II topoisomerases gyrase and topoisomerase IV by AZD0914 (AZD0914 will be henceforth known as ETX0914 (Entasis Therapeutics)), a novel spiropyrimidinetrione antibacterial compound that is currently in clinical trials for treatment of drug-resistant gonorrhea. AZD0914 has potent bactericidal activity against N. gonorrhoeae, including multidrug-resistant strains and key Gram-positive, fastidious Gram-negative, atypical, and anaerobic bacterial species (Huband, M. D., Bradford, P. A., Otterson, L. G., Basrab, G. S., Giacobe, R. A., Patey, S. A., Kutschke, A. C., Johnstone, M. R., Potter, M. E., Miller, P. F., and Mueller, J. P. (2014) In Vitro Antibacterial Activity of AZD0914: A New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-positive, Fastidious Gram-negative, and Atypical Bacteria. Antimicrob. Agents Chemother. 59, 467–474). AZD0914 inhibited DNA biosynthesis preferentially to other macromolecules in Escherichia coli and induced the SOS response to DNA damage in E. coli. AZD0914 stabilized the enzyme-DNA cleaved complex for N. gonorrhoeae gyrase and topoisomerase IV. The potency of AZD0914 for inhibition of supercoiling and the stabilization of cleaved complex by N. gonorrhoeae gyrase increased in a fluoroquinolone-resistant mutant enzyme. When a mutation, conferring mild resistance to AZD0914, was present in the fluoroquinolone-resistant mutant, the potency of ciprofloxacin for inhibition of supercoiling and stabilization of cleaved complex was increased greater than 20-fold. In contrast to ciprofloxacin, religation of the cleaved DNA did not occur in the presence of AZD0914 upon removal of magnesium from the DNA-gyrase-inhibitor complex. AZD0914 had relatively low potency for inhibition of human type II topoisomerases α and β.


Magnetic Resonance in Chemistry | 2010

Aroma WaterLOGSY: a fast and sensitive screening tool for drug discovery

Jun Hu; Per-Olof Eriksson; Gunther Kern

One‐dimensional NMR spectroscopy has proven to be a powerful technique for screening compound libraries in drug discovery. We report a novel water ligand‐observed gradient spectroscopy (WaterLOGSY) pulse sequence, named Aroma WaterLOGSY, that selectively detects aromatic WaterLOGSY signals from compounds or ligands. In the Aroma WaterLOGSY, water magnetization is untouched after water excitation and utilizes the whole period of the remaining pulse sequence to relax back to the + z direction. Due to the phase cycling design, the water magnetization is allowed to relax for the period of two full scans before it gets inverted again. Therefore, the recycle delay can be significantly shortened. Within similar experimental time, Aroma WaterLOGSY shows approximately two times higher sensitivity than the standard scheme. This method also allows the use of non‐deuterated reagents, thereby accelerating experimental set‐up time for ligand‐binding studies. Copyright


Biophysical Chemistry | 2002

Folding and stability of different oligomeric states of thiamin diphosphate dependent homomeric pyruvate decarboxylase

Margrit Killenberg-Jabs; Gunther Kern; Gerhard Hübner; Ralph Golbik

The folding and stability of recombinant homomeric (alpha-only) pyruvate decarboxylase from yeast was investigated. Different oligomeric states (tetramers, dimers and monomers) of the enzyme occur under defined conditions. The enzymatic activity is used as a sensitive probe for structural differences between the active and inactive form (mis-assembled forms, aggregates) of the folded protein. Unfolding kinetics starting from the native protein comprise both the dissociation of the oligomers into monomers and their subsequent denaturation, which could be monitored by stopped-flow kinetics. In the course of unfolding, the tetramers do not directly dissociate into monomers, but via a stable dimeric state. Starting from the unfolded state, a reactivation of homomeric pyruvate decarboxylase requires both refolding to monomers and their correct association to enzymatically active dimers or tetramers. The reactivation yield under the in vitro conditions used follows an optimum behavior.


Journal of Biomolecular Screening | 2013

A High-Throughput–Compatible Fluorescence Anisotropy-Based Assay for Competitive Inhibitors of Escherichia coli UDP-N-Acetylglucosamine Acyltransferase (LpxA)

Adam B. Shapiro; Philip L. Ross; Ning Gao; Stephania Livchak; Gunther Kern; Wei Yang; Beth Andrews; Jason Thresher

LpxA, the first enzyme in the biosynthetic pathway for the Lipid A component of the outer membrane lipopolysaccharide in Gram-negative bacteria, is a potential target for novel antibacterial drug discovery. A fluorescence polarization assay was developed to facilitate high-throughput screening for competitive inhibitors of LpxA. The assay detects displacement of a fluorescently labeled peptide inhibitor, based on the previously reported inhibitor peptide 920, by active site ligands. The affinity of the fluorescent ligand was increased ~10-fold by acyl carrier protein (ACP). Competition with peptide binding was observed with UDP-N-acetylglucosamine (IC50 ~6 mM), UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine (IC50 ~200 nM), and DL-3-hydroxymyristic acid (IC50 ~50 µM) and peptide 920 (IC50 ~600 nM). The IC50s were not significantly affected by the presence of ACP.


Archive | 2012

NMR in Infection Research

Jun Hu; Gunther Kern

In comparison to other research areas, antibacterial drug discovery provides many opportunities to employ nuclear magnetic resonance (NMR) spectroscopy in the process of drug discovery. First of all, there are a large number of validated targets that can be cloned and expressed and their biological function is well understood. Most targets can be over-expressed readily and purified at quantities needed for NMR. Meanwhile, structural information is frequently available for at least one representative of a given target. Furthermore, enzyme substrates and corresponding inhibitors are often available and characterized. In combination, these factors make NMR studies for bacterial targets both feasible and economical in industrial research.

Collaboration


Dive into the Gunther Kern's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yafeng Xue

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Dorothee Kern

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge