Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guosong Hong is active.

Publication


Featured researches published by Guosong Hong.


Journal of the American Chemical Society | 2011

MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction

Yanguang Li; Hailiang Wang; Liming Xie; Yongye Liang; Guosong Hong; Hongjie Dai

Advanced materials for electrocatalytic and photoelectrochemical water splitting are central to the area of renewable energy. In this work, we developed a selective solvothermal synthesis of MoS(2) nanoparticles on reduced graphene oxide (RGO) sheets suspended in solution. The resulting MoS(2)/RGO hybrid material possessed nanoscopic few-layer MoS(2) structures with an abundance of exposed edges stacked onto graphene, in strong contrast to large aggregated MoS(2) particles grown freely in solution without GO. The MoS(2)/RGO hybrid exhibited superior electrocatalytic activity in the hydrogen evolution reaction (HER) relative to other MoS(2) catalysts. A Tafel slope of ∼41 mV/decade was measured for MoS(2) catalysts in the HER for the first time; this exceeds by far the activity of previous MoS(2) catalysts and results from the abundance of catalytic edge sites on the MoS(2) nanoparticles and the excellent electrical coupling to the underlying graphene network. The ∼41 mV/decade Tafel slope suggested the Volmer-Heyrovsky mechanism for the MoS(2)-catalyzed HER, with electrochemical desorption of hydrogen as the rate-limiting step.


Nature Communications | 2013

Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.

Yanguang Li; Ming Gong; Yongye Liang; Ju Feng; Ji-Eun Kim; Hailiang Wang; Guosong Hong; Bo Zhang; Hongjie Dai

Primary and rechargeable Zn-air batteries could be ideal energy storage devices with high energy and power density, high safety and economic viability. Active and durable electrocatalysts on the cathode side are required to catalyse oxygen reduction reaction during discharge and oxygen evolution reaction during charge for rechargeable batteries. Here we developed advanced primary and rechargeable Zn-air batteries with novel CoO/carbon nanotube hybrid oxygen reduction catalyst and Ni-Fe-layered double hydroxide oxygen evolution catalyst for the cathode. These catalysts exhibited higher catalytic activity and durability in concentrated alkaline electrolytes than precious metal Pt and Ir catalysts. The resulting primary Zn-air battery showed high discharge peak power density ~265 mW cm(-2), current density ~200 mA cm(-2) at 1 V and energy density >700 Wh kg(-1). Rechargeable Zn-air batteries in a tri-electrode configuration exhibited an unprecedented small charge-discharge voltage polarization of ~0.70 V at 20 mA cm(-2), high reversibility and stability over long charge and discharge cycles.


ACS Nano | 2012

Ag2S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window

Yan Zhang; Guosong Hong; Yejun Zhang; Guangcun Chen; Feng Li; Hongjie Dai; Qiangbin Wang

Ag(2)S quantum dots (QDs) emitting in the second near-infrared region (NIR-II, 1.0-1.4 μm) are demonstrated as a promising fluorescent probe with both bright photoluminescence and high biocompatibility for the first time. Highly selective in vitro targeting and imaging of different cell lines are achieved using biocompatible NIR-II Ag(2)S QDs with different targeting ligands. The cytotoxicity study illustrates the Ag(2)S QDs with negligible effects in altering cell proliferation, triggering apoptosis and necrosis, generating reactive oxygen species, and causing DNA damage. Our results have opened up the possibilities of using these biocompatible Ag(2)S QDs for in vivo anatomical imaging and early stage tumor diagnosis with deep tissue penetration, high sensitivity, and elevated spatial and temporal resolution owing to their high emission efficiency in the unique NIR-II imaging window.


Nature Medicine | 2012

Multifunctional in vivo vascular imaging using near-infrared II fluorescence

Guosong Hong; Jerry C. Lee; Joshua T. Robinson; Uwe Raaz; Liming Xie; Ngan F. Huang; John P. Cooke; Hongjie Dai

In vivo real-time epifluorescence imaging of mouse hind limb vasculatures in the second near-infrared region (NIR-II) is performed using single-walled carbon nanotubes as fluorophores. Both high spatial (∼30 μm) and temporal (<200 ms per frame) resolution for small-vessel imaging are achieved at 1–3 mm deep in the hind limb owing to the beneficial NIR-II optical window that affords deep anatomical penetration and low scattering. This spatial resolution is unattainable by traditional NIR imaging (NIR-I) or microscopic computed tomography, and the temporal resolution far exceeds scanning microscopic imaging techniques. Arterial and venous vessels are unambiguously differentiated using a dynamic contrast-enhanced NIR-II imaging technique on the basis of their distinct hemodynamics. Further, the deep tissue penetration and high spatial and temporal resolution of NIR-II imaging allow for precise quantifications of blood velocity in both normal and ischemic femoral arteries, which are beyond the capabilities of ultrasonography at lower blood velocities.


Angewandte Chemie | 2012

In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near‐Infrared Region

Guosong Hong; Joshua T. Robinson; Yejun Zhang; Shuo Diao; Alexander L. Antaris; Qiangbin Wang; Hongjie Dai

Hits the dot: Ag(2)S quantum dots (QDs) with bright near-infrared-II fluorescence emission (around 1200 nm) and six-arm branched PEG surface coating were synthesized for in vivo small-animal imaging. The 6PEG-Ag(2)S QDs afforded a tumor uptake of approximately 10 % injected dose/gram, owing to a long circulation half-life of approximately 4 h. Clearance of the injected 6PEG-Ag(2)S QDs occurs mainly through the biliary pathway in mice.


Angewandte Chemie | 2011

LiMn1−xFexPO4 Nanorods Grown on Graphene Sheets for Ultrahigh‐Rate‐Performance Lithium Ion Batteries

Hailiang Wang; Yuan Yang; Yongye Liang; Li-Feng Cui; Hernan Sanchez Casalongue; Yanguang Li; Guosong Hong; Yi Cui; Hongjie Dai

Olivine-type lithium transition-metal phosphates LiMPO4 (M=Fe, Mn, Co, or Ni) have been intensively investigated as promising cathode materials for rechargeable lithium ion batteries (LIBs) owing to their high capacity, excellent cycle life, thermal stability, environmental benignity, and low cost. However, the inherently low ionic and electrical conductivities of LiMPO4 seriously limit Li + insertion and extraction and charge transport rates in these materials. In recent years, these obstacles have been overcome for LiFePO4 by reducing the size of LiFePO4 particles to the nanoscale and applying conductive surface coatings such as carbon, which leads to commercially viable LiFePO4 cathode materials. Compared to LiFePO4, LiMnPO4 is an attractive cathode material owing to its higher Li intercalation potential of 4.1 V versus Li/Li (3.4 V for LiFePO4), providing about 20% higher energy density than LiFePO4 for LIBs. [14–19] Importantly, the 4.1 V intercalation potential of LiMnPO4 is compatible with most of the currently used liquid electrolytes. However, the electrical conductivity of LiMnPO4 is lower than the already insulating LiFePO4 by five orders of magnitude, making it challenging to achieve high capacity at high rates for LiMnPO4 using methods developed for LiFePO4. [14–19] Doping LiMnPO4 with Fe has been pursued to enhance conductivity and stability of the material in its charged form. Recently, Martha et al. have obtained improved capacity and rate performance for carbon-coated LiMn0.8Fe0.2PO4 nanoparticles synthesized by a high-temperature solid-state reaction. Graphene is an ideal substrate for growing and anchoring insulating materials for energy storage applications because of its high conductivity, light weight, high mechanical strength, and structural flexibility. The electrochemical performance of various electrode materials can be significantly boosted by rendering them conducting with graphene sheets. Recent work has shown improved specific capacities and rate capabilities of simple oxide nanomaterials (Mn3O4, Co3O4, and Fe3O4) grown on graphene as LIB anode materials. However, it remains a challenge to grow nanocrystals on graphene sheets in solution for materials with more sophisticated compositions and structures, such as LiMn1 xFexPO4, which is a promising but extremely insulating cathode material for LIBs. Herein we present a two-step approach for synthesis of LiMn1 xFexPO4 nanorods on reduced graphene oxide sheets stably suspended in solution. Fe-doped Mn3O4 nanoparticles were first selectively grown onto graphene oxide by controlled hydrolysis. The oxide nanoparticle precursors then reacted solvothermally with Li and phosphate ions and were transformed into LiMn1 xFexPO4 on the surface of reduced graphene oxide sheets. With a total content of 26 wt% conductive carbon, the resulting hybrid of nanorods and graphene showed high specific capacity and unprecedentedly high power rate for LiMn1 xFexPO4 type of cathode materials. Stable capacities of 132 mAhg 1 and 107 mAhg 1 were obtained at high discharge rates of 20C and 50C, which is 85% and 70% of the capacity at C/2 (155 mAhg ), respectively. This affords LIBs with both high energy and high power densities. This is also the first synthesis of LiMn0.75Fe0.25PO4 nanorods that have an ideal crystal shape and morphology for fast Li diffusion along the radial [010] direction of the nanorods. Figure 1 shows our two-step solution-phase reaction for the synthesis LiMn0.75Fe0.25PO4 nanorods on reduced graphene oxide (for experimental details, see the Supporting Information). The first step was to selectively grow oxide nanoparticles at 80 8C on mildly oxidized graphene oxide (mGO) stably suspended in a solution. Controlling the hydrolysis rate of Mn(OAc)2 and Fe(NO3)3 by adjusting the H2O/N,N-dimethylformamide (DMF) solvent ratio and the reaction temperature afforded selective and uniform coating of circa 10 nm nanoparticles of Fe-doped Mn3O4 (Supporting Information, Figure S1a; X-ray diffraction data in Figure S1b) on the mGO sheets without free growth of nanoparticles in solution. Importantly, our mGO was made by a modified Hummers method (Supporting Information), with which a sixfold lower concentration of KMnO4 oxidizer was used to afford milder oxidation of graphite. The resulting mGO sheets contained a lower oxygen content than Hummers GO (ca. 15% vs. ca. 30% measured by X-ray photoelectron spectroscopy (XPS) and Auger spectroscopy) and showed higher electrical conductivity when chemically reduced than [*] H. Wang, Y. Liang, H. Sanchez Casalongue, Y. Li, G. Hong, Prof. H. Dai Department of Chemistry Stanford University, Stanford, CA 94305 (USA) E-mail: [email protected] Y. Yang, L. Cui, Prof. Y. Cui Department of Materials Science and Engineering Stanford University, Stanford, CA 94305 (USA) E-mail: [email protected] [] These authors contributed equally to this work.


Nature Photonics | 2014

Through-skull fluorescence imaging of the brain in a new near-infrared window

Guosong Hong; Shuo Diao; Junlei Chang; Alexander L. Antaris; Changxin Chen; Bo Zhang; Su Zhao; Dmitriy N. Atochin; Paul L. Huang; Katrin Andreasson; Calvin J. Kuo; Hongjie Dai

To date, brain imaging has largely relied on X-ray computed tomography and magnetic resonance angiography with limited spatial resolution and long scanning times. Fluorescence-based brain imaging in the visible and traditional near-infrared regions (400–900 nm) is an alternative but currently requires craniotomy, cranial windows and skull thinning techniques, and the penetration depth is limited to 1–2 mm due to light scattering. Here, we report through-scalp and through-skull fluorescence imaging of mouse cerebral vasculature without craniotomy utilizing the intrinsic photoluminescence of single-walled carbon nanotubes in the 1.3–1.4 micrometre near-infrared window. Reduced photon scattering in this spectral region allows fluorescence imaging reaching a depth of >2 mm in mouse brain with sub-10 micrometre resolution. An imaging rate of ~5.3 frames/s allows for dynamic recording of blood perfusion in the cerebral vessels with sufficient temporal resolution, providing real-time assessment of blood flow anomaly in a mouse middle cerebral artery occlusion stroke model.


Nature Materials | 2016

A small-molecule dye for NIR-II imaging

Alexander L. Antaris; Hao Chen; Kai Cheng; Yao Sun; Guosong Hong; Chunrong Qu; Shuo Diao; Zixin Deng; Xianming Hu; Bo Zhang; Xiao-Dong Zhang; Omar K. Yaghi; Zita R. Alamparambil; Xuechuan Hong; Zhen Cheng; Hongjie Dai

Fluorescent imaging of biological systems in the second near-infrared window (NIR-II) can probe tissue at centimetre depths and achieve micrometre-scale resolution at depths of millimetres. Unfortunately, all current NIR-II fluorophores are excreted slowly and are largely retained within the reticuloendothelial system, making clinical translation nearly impossible. Here, we report a rapidly excreted NIR-II fluorophore (∼90% excreted through the kidneys within 24 h) based on a synthetic 970-Da organic molecule (CH1055). The fluorophore outperformed indocyanine green (ICG)-a clinically approved NIR-I dye-in resolving mouse lymphatic vasculature and sentinel lymphatic mapping near a tumour. High levels of uptake of PEGylated-CH1055 dye were observed in brain tumours in mice, suggesting that the dye was detected at a depth of ∼4 mm. The CH1055 dye also allowed targeted molecular imaging of tumours in vivo when conjugated with anti-EGFR Affibody. Moreover, a superior tumour-to-background signal ratio allowed precise image-guided tumour-removal surgery.


Journal of the American Chemical Society | 2012

In Vivo Fluorescence Imaging in the Second Near-Infrared Window with Long Circulating Carbon Nanotubes Capable of Ultrahigh Tumor Uptake

Joshua T. Robinson; Guosong Hong; Yongye Liang; Bo Zhang; Omar K. Yaghi; Hongjie Dai

Cancer imaging requires selective high accumulation of contrast agents in the tumor region and correspondingly low uptake in healthy tissues. Here, by making use of a novel synthetic polymer to solubilize single-walled carbon nanotubes (SWNTs), we prepared a well-functionalized SWNT formulation with long blood circulation (half-life of ∼30 h) in vivo to achieve ultrahigh accumulation of ∼30% injected dose (ID)/g in 4T1 murine breast tumors in Balb/c mice. Functionalization dependent blood circulation and tumor uptake were investigated through comparisons with phospholipid-PEG solubilized SWNTs. For the first time, we performed video-rate imaging of tumors based on the intrinsic fluorescence of SWNTs in the second near-infrared (NIR-II, 1.1-1.4 μm) window. We carried out dynamic contrast imaging through principal component analysis (PCA) to immediately pinpoint the tumor within ∼20 s after injection. Imaging over time revealed increasing tumor contrast up to 72 h after injection, allowing for its unambiguous identification. The 3D reconstruction of the SWNTs distribution based on their stable photoluminescence inside the tumor revealed a high degree of colocalization of SWNTs and blood vessels, suggesting enhanced permeability and retention (EPR) effect as the main cause of high passive tumor uptake of the nanotubes.


Nature Nanotechnology | 2015

Syringe-injectable electronics

Jia Liu; Tian-Ming Fu; Zengguang Cheng; Guosong Hong; Tao Zhou; Lihua Jin; Madhavi Duvvuri; Zhe Jiang; Peter Kruskal; Chong Xie; Zhigang Suo; Ying Fang; Charles M. Lieber

Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.

Collaboration


Dive into the Guosong Hong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yongye Liang

South University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge