Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexander L. Antaris is active.

Publication


Featured researches published by Alexander L. Antaris.


Angewandte Chemie | 2012

In Vivo Fluorescence Imaging with Ag2S Quantum Dots in the Second Near‐Infrared Region

Guosong Hong; Joshua T. Robinson; Yejun Zhang; Shuo Diao; Alexander L. Antaris; Qiangbin Wang; Hongjie Dai

Hits the dot: Ag(2)S quantum dots (QDs) with bright near-infrared-II fluorescence emission (around 1200 nm) and six-arm branched PEG surface coating were synthesized for in vivo small-animal imaging. The 6PEG-Ag(2)S QDs afforded a tumor uptake of approximately 10 % injected dose/gram, owing to a long circulation half-life of approximately 4 h. Clearance of the injected 6PEG-Ag(2)S QDs occurs mainly through the biliary pathway in mice.


Nature Photonics | 2014

Through-skull fluorescence imaging of the brain in a new near-infrared window

Guosong Hong; Shuo Diao; Junlei Chang; Alexander L. Antaris; Changxin Chen; Bo Zhang; Su Zhao; Dmitriy N. Atochin; Paul L. Huang; Katrin Andreasson; Calvin J. Kuo; Hongjie Dai

To date, brain imaging has largely relied on X-ray computed tomography and magnetic resonance angiography with limited spatial resolution and long scanning times. Fluorescence-based brain imaging in the visible and traditional near-infrared regions (400–900 nm) is an alternative but currently requires craniotomy, cranial windows and skull thinning techniques, and the penetration depth is limited to 1–2 mm due to light scattering. Here, we report through-scalp and through-skull fluorescence imaging of mouse cerebral vasculature without craniotomy utilizing the intrinsic photoluminescence of single-walled carbon nanotubes in the 1.3–1.4 micrometre near-infrared window. Reduced photon scattering in this spectral region allows fluorescence imaging reaching a depth of >2 mm in mouse brain with sub-10 micrometre resolution. An imaging rate of ~5.3 frames/s allows for dynamic recording of blood perfusion in the cerebral vessels with sufficient temporal resolution, providing real-time assessment of blood flow anomaly in a mouse middle cerebral artery occlusion stroke model.


Nature Materials | 2016

A small-molecule dye for NIR-II imaging

Alexander L. Antaris; Hao Chen; Kai Cheng; Yao Sun; Guosong Hong; Chunrong Qu; Shuo Diao; Zixin Deng; Xianming Hu; Bo Zhang; Xiao-Dong Zhang; Omar K. Yaghi; Zita R. Alamparambil; Xuechuan Hong; Zhen Cheng; Hongjie Dai

Fluorescent imaging of biological systems in the second near-infrared window (NIR-II) can probe tissue at centimetre depths and achieve micrometre-scale resolution at depths of millimetres. Unfortunately, all current NIR-II fluorophores are excreted slowly and are largely retained within the reticuloendothelial system, making clinical translation nearly impossible. Here, we report a rapidly excreted NIR-II fluorophore (∼90% excreted through the kidneys within 24 h) based on a synthetic 970-Da organic molecule (CH1055). The fluorophore outperformed indocyanine green (ICG)-a clinically approved NIR-I dye-in resolving mouse lymphatic vasculature and sentinel lymphatic mapping near a tumour. High levels of uptake of PEGylated-CH1055 dye were observed in brain tumours in mice, suggesting that the dye was detected at a depth of ∼4 mm. The CH1055 dye also allowed targeted molecular imaging of tumours in vivo when conjugated with anti-EGFR Affibody. Moreover, a superior tumour-to-background signal ratio allowed precise image-guided tumour-removal surgery.


Nature Communications | 2014

Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window

Guosong Hong; Yingping Zou; Alexander L. Antaris; Shuo Diao; Di Wu; Kai Cheng; Xiao-Dong Zhang; Changxin Chen; Bo Liu; Yuehui He; Justin Z. Wu; Jun Yuan; Bo Zhang; Zhimin Tao; Chihiro Fukunaga; Hongjie Dai

In vivo fluorescence imaging in the second near-infrared window (1.0-1.7 μm) can afford deep tissue penetration and high spatial resolution, owing to the reduced scattering of long-wavelength photons. Here we synthesize a series of low-bandgap donor/acceptor copolymers with tunable emission wavelengths of 1,050-1,350 nm in this window. Non-covalent functionalization with phospholipid-polyethylene glycol results in water-soluble and biocompatible polymeric nanoparticles, allowing for live cell molecular imaging at >1,000 nm with polymer fluorophores for the first time. Importantly, the high quantum yield of the polymer allows for in vivo, deep-tissue and ultrafast imaging of mouse arterial blood flow with an unprecedented frame rate of >25 frames per second. The high time-resolution results in spatially and time resolved imaging of the blood flow pattern in cardiogram waveform over a single cardiac cycle (~200 ms) of a mouse, which has not been observed with fluorescence imaging in this window before.


ACS Nano | 2013

Ultra-Low Doses of Chirality Sorted (6,5) Carbon Nanotubes for Simultaneous Tumor Imaging and Photothermal Therapy

Alexander L. Antaris; Joshua T. Robinson; Omar K. Yaghi; Guosong Hong; Shuo Diao; Richard Luong; Hongjie Dai

Single-walled carbon nanotubes (SWCNTs) exhibit intrinsic fluorescence and strong optical absorption in the near-infrared (NIR) biological window (0.7-1.4 μm), rendering them ideal for in vivo imaging and photothermal therapy. Advances in SWCNT sorting have led to improved nanoelectronics and are promising for nanomedicine. To date, SWCNTs used in vivo consist of heterogeneous mixtures of nanotubes and only a small subset of chirality nanotubes fluoresces or heats under a NIR laser. Here, we demonstrate that separated (6,5) SWCNTs exchanged into a biocompatible surfactant, C18-PMH-mPEG, are more than 6-fold brighter in photoluminescence on the per mass basis, afford clear tumor imaging, and reach requisite photothermal tumor ablation temperatures with a >10-fold lower injected dose than as-synthesized SWCNT mixtures while exhibiting relatively low (6,5) accumulation in the reticuloendothelial system. The intravenous injection of ∼4 μg of (6,5) SWCNTs per mouse (0.254 mg/kg) for dual imaging/photothermal therapy is, by far, the lowest reported dose for nanoparticle-based in vivo therapeutics.


Advanced Materials | 2015

Diketopyrrolopyrrole-Based Semiconducting Polymer Nanoparticles for In Vivo Photoacoustic Imaging.

Kanyi Pu; Jianguo Mei; Jesse V. Jokerst; Guosong Hong; Alexander L. Antaris; Niladri Chattopadhyay; Adam J. Shuhendler; Tadanori Kurosawa; Yan Zhou; Sanjiv S. Gambhir; Zhenan Bao; Jianghong Rao

Diketopyrrolopyrrole-based semiconducting polymer nanoparticles with high photostability and strong photoacoustic brightness are designed and synthesized, which results in 5.3-fold photoacoustic signal enhancement in tumor xenografts after systemic administration.


Angewandte Chemie | 2013

Biological Imaging Using Nanoparticles of Small Organic Molecules with Fluorescence Emission at Wavelengths Longer than 1000 nm

Zhimin Tao; Guosong Hong; Chihiro Shinji; Changxin Chen; Shuo Diao; Alexander L. Antaris; Bo Zhang; Yingping Zou; Hongjie Dai

Embedded in a polymer: A hydrophobic organic molecule that fluoresces in the near-infrared II (NIR-II) region was made water-soluble and biocompatible by its embedment in a polymer nanoparticle, which was then coated with hydrophilic poly(ethylene glycol) chains. The resulting nanoparticles exhibit bright fluorescence in the NIR-II window and high photostability in aqueous media and were used for in vivo imaging in mice.


Journal of the American Chemical Society | 2012

Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging.

Shuo Diao; Guosong Hong; Joshua T. Robinson; Liying Jiao; Alexander L. Antaris; Justin Z. Wu; Charina L. Choi; Hongjie Dai

The intrinsic band gap photoluminescence of semiconducting single-walled carbon nanotubes (SWNTs) makes them promising biological imaging probes in the second near-infrared (NIR-II, 1.0-1.4 μm) window. Thus far, SWNTs used for biological applications have been a complex mixture of metallic and semiconducting species with random chiralities, preventing simultaneous resonant excitation of all semiconducting nanotubes and emission at a single well-defined wavelength. Here, we developed a simple gel filtration method to enrich semiconducting (12,1) and (11,3) SWNTs with identical resonance absorption at ~808 nm and emission near ~1200 nm. The chirality sorted SWNTs showed ~5-fold higher photoluminescence intensity under resonant excitation of 808 nm than unsorted SWNTs on a per-mass basis. Real-time in vivo video imaging of whole mouse body and tumor vessels was achieved using a ~6-fold lower injected dose of (12,1) and (11,3) SWNTs (~3 μg per mouse or ~0.16 mg/kg of body weight vs 1.0 mg/kg for unsorted SWNTs) than a previous heterogeneous mixture, demonstrating the first resonantly excited and chirality separated SWNTs for biological imaging.


Acta Biomaterialia | 2013

Design of three-dimensional engineered protein hydrogels for tailored control of neurite growth.

Kyle J. Lampe; Alexander L. Antaris; Sarah C. Heilshorn

The design of bioactive materials allows tailored studies probing cell-biomaterial interactions, however, relatively few studies have examined the effects of ligand density and material stiffness on neurite growth in three-dimensions. Elastin-like proteins (ELPs) have been designed with modular bioactive and structural regions to enable the systematic characterization of design parameters within three-dimensional (3-D) materials. To promote neurite out-growth and better understand the effects of common biomaterial design parameters on neuronal cultures we here focused on the cell-adhesive ligand density and hydrogel stiffness as design variables for ELP hydrogels. With the inherent design freedom of engineered proteins these 3-D ELP hydrogels enabled decoupled investigations into the effects of biomechanics and biochemistry on neurite out-growth from dorsal root ganglia. Increasing the cell-adhesive RGD ligand density from 0 to 1.9×10(7)ligands μm(-3) led to a significant increase in the rate, length, and density of neurite out-growth, as quantified by a high throughput algorithm developed for dense neurite analysis. An approximately two-fold improvement in total neurite out-growth was observed in materials with the higher ligand density at all time points up to 7 days. ELP hydrogels with initial elastic moduli of 0.5, 1.5, or 2.1kPa and identical RGD ligand densities revealed that the most compliant materials led to the greatest out-growth, with some neurites extending over 1800μm by day 7. Given the ability of ELP hydrogels to efficiently promote neurite out-growth within defined and tunable 3-D microenvironments these materials may be useful in developing therapeutic nerve guides and the further study of basic neuron-biomaterial interactions.


ACS Nano | 2010

Sorting single-walled carbon nanotubes by electronic type using nonionic, biocompatible block copolymers.

Alexander L. Antaris; Jung Woo T Seo; Alexander A. Green; Mark C. Hersam

As-synthesized single-walled carbon nanotubes (SWNTs) typically possess a range of diameters and electronic properties. This polydispersity has hindered the development of many SWNT-based technologies and encouraged the development of postsynthetic methods for sorting SWNTs by their physical and electronic structure. Herein, we demonstrate that nonionic, biocompatible block copolymers can be used to isolate semiconducting and metallic SWNTs using density gradient ultracentrifugation. Separations conducted with different Pluronic block copolymers reveal that Pluronics with shorter hydrophobic chain lengths lead to higher purity semiconducting SWNTs, resulting in semiconducting purity levels in excess of 99% obtained for Pluronic F68. In contrast, X-shaped Tetronic block copolymers display an affinity for metallic SWNTs, yielding metallic purity levels of 74% for Tetronic 1107. These results suggest that high fidelity and high yield density gradient separations can be achieved using nonionic block copolymers with rationally designed homopolymer segments, thus generating biocompatible monodisperse SWNTs for a range of applications.

Collaboration


Dive into the Alexander L. Antaris's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge