Gurugirijha Rathnasamy
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gurugirijha Rathnasamy.
Journal of Neuroimmune Pharmacology | 2013
Charanjit Kaur; Gurugirijha Rathnasamy; Eng-Ang Ling
Amoeboid microglial cells (AMCs) in the developing brain display surface receptors and antigens shared by the monocyte-derived tissue macrophages. Activation of AMCs in the perinatal brain has been associated with periventricular white matter damage in hypoxic-ischemic conditions. The periventricular white matter, where the AMCs preponderate, is selectively vulnerable to hypoxia as manifested by death of premyelinating oligodendrocytes and degeneration of axons leading to neonatal mortality and long-term neurodevelopmental deficits. AMCs respond vigorously to hypoxia by producing excess amounts of inflammatory cytokines e.g. the tumor necrosis factor–α (TNF-α) and interleukin-1β (IL-1β) along with glutamate, nitric oxide (NO) and reactive oxygen species which collectively cause oligodendrocyte death, axonal degeneration as well as disruption of the immature blood brain barrier. A similar phenomenon is observed in the hypoxic developing cerebellum in which activated AMCs induced Purkinje neuronal death through production of TNF-α and IL-1β via their respective receptors. Hypoxia is also implicated in retinopathy of prematurity in which activation of AMCs has been shown to cause retinal ganglion cell death through production of TNF-α and IL-1β and NO. Because AMCs play a pivotal role in hypoxic injuries in the developing brain affecting both neurons and oligodendrocytes, a fuller understanding of the underlying molecular mechanisms of microglial activation under such conditions would be desirable for designing of a novel therapeutic strategy for management of hypoxic damage.
Journal of Neuropathology and Experimental Neurology | 2016
Charanjit Kaur; Gurugirijha Rathnasamy; Eng-Ang Ling
The choroid plexus is composed of epithelial cells resting on a basal lamina. These cells produce the cerebrospinal fluid (CSF), which has many functions including rendering mechanical support, providing a route for some nutrients, removing by-products of metabolism and synaptic activity, and playing a role in hormonal signaling. The choroid plexus synthesizes many growth factors, including insulin-like, fibroblast, and platelet-derived growth factors. The tight junctions located between the apical parts of the choroid plexus epithelial cells form the blood-CSF barrier (BCSFB), which is crucial for the homeostatic regulation of the brain microenvironment along with the blood-brain barrier (BBB). Morphological changes such as atrophy of the epithelial cells and thickening of the basement membrane suggest altered CSF production occurs in aging and in Alzheimer disease. In brain injuries and infections, leukocytes accumulate in the CSF by passing through the choroid plexus. In inflammatory CNS diseases (eg, multiple sclerosis), pathogenic autoreactive T lymphocytes may migrate through the BBB and BCSFB into the CNS. The development of therapeutic strategies to mitigate disruption of the BCSFB may be helpful to curtail the entry of inflammatory cells into the CSF and hence reduce inflammation, thereby overcoming choroid plexus dysfunction in senescence and in various diseases of the CNS.
Investigative Ophthalmology & Visual Science | 2014
Gurugirijha Rathnasamy; Viswanathan Sivakumar; Parakalan Rangarajan; Wallace S. Foulds; Eng-Ang Ling; Charanjit Kaur
PURPOSE Hypoxic insult to the developing retina results in apoptosis of retinal ganglion cells (RGCs) through production of inflammatory mediators, nitric oxide (NO), and free radicals. The present study was aimed at elucidating the pathway through which hypoxia results in overproduction of NO in the immature retina, and its role in causing apoptosis of RGCs. METHODS Wistar rats (1 day old) were exposed to hypoxia and their retinas were studied at 3 hours to 14 days after exposure. The protein expression of nuclear factor-κB (NF-κB) and neuronal nitric oxide synthase (nNOS) in the retina and primary cultures of RGCs was analyzed using Western blotting and double-immunofluorescence, whereas the concentration of NO was determined calorimetrically. In cultured RGCs, hypoxia-induced apoptosis was evaluated by caspase-3 immunolabeling. RESULTS Following hypoxic exposure, NF-κB-mediated expression of nNOS, which was localized to the RGCs, and subsequent NO production was significantly increased in the developing retina. In primary cultures of RGCs subjected to hypoxia, the upregulation of nNOS and NO was significantly suppressed when treated with 7-nitroindazole (7-NINA), an nNOS inhibitor or BAY, an NF-κB inhibitor. Hypoxia-induced apoptosis of RGCs, which was evident with caspase-3 labeling, also was suppressed when these cells were treated with 7-NINA or BAY. CONCLUSIONS Our results suggest that in RGCs, hypoxic induction of nNOS is mediated by NF-κB and the resulting increased release of NO by RGCs causes their apoptosis through caspase-3 activation. It is speculated that targeting nNOS could be a potential neuroprotective strategy against hypoxia-induced RGCs death in the developing retina.
Molecular Neurobiology | 2016
Gurugirijha Rathnasamy; Madhuvika Murugan; Eng-Ang Ling; Charanjit Kaur
This study was aimed at evaluating the role of increased iron accumulation in oligodendrocytes and its role in their apoptosis in the periventricular white matter damage (PWMD) following a hypoxic injury to the neonatal brain. In response to hypoxia, in the PWM, there was increased expression of proteins involved in iron acquisition, such as iron regulatory proteins (IRP1, IRP2) and transferrin receptor in oligodendrocytes. Consistent with this, following a hypoxic exposure, there was increased accumulation of iron in primary cultured oligodendrocytes. The increased concentration of iron within hypoxic oligodendrocytes was found to elicit ryanodine receptor (RyR) expression, and the expression of endoplasmic reticulum (ER) stress markers such as binding-immunoglobulin protein (BiP) and inositol-requiring enzyme (IRE)-1α. Associated with ER stress, there was reduced adenosine triphosphate (ATP) levels within hypoxic oligodendrocytes. However, treatment with deferoxamine reduced the increased expression of RyR, BiP, and IRE-1α and increased ATP levels in hypoxic oligodendrocytes. Parallel to ER stress there was enhanced reactive oxygen species production within mitochondria of hypoxic oligodendrocytes, which was attenuated when these cells were treated with deferoxamine. At the ultrastructural level, hypoxic oligodendrocytes frequently showed dilated ER and disrupted mitochondria, which became less evident in those treated with deferoxamine. Associated with these subcellular changes, the apoptosis of hypoxic oligodendrocytes was evident with an increase in p53 and caspase-3 expression, which was attenuated when these cells were treated with deferoxamine. Thus, the present study emphasizes that the excess iron accumulated within oligodendrocytes in hypoxic PWM could result in their death by eliciting ER stress and mitochondrial disruption.
Neuropharmacology | 2014
Gurugirijha Rathnasamy; Eng-Ang Ling; Charanjit Kaur
Iron accumulation occurs in tissues such as periventricular white matter (PWM) in response to hypoxic injuries, and microglial cells sequester excess iron following hypoxic exposure. As hypoxia has a role in altering the expression of proteins involved in iron regulation, this study was aimed at examining the interaction between hypoxia inducible factor (HIF)-1α and proteins involved in iron transport in microglial cells, and evaluating the mechanistic action of deferoxamine and KC7F2 (an inhibitor of HIF-1α) in iron mediated hypoxic injury. Treating the microglial cultures with KC7F2, led to decreased expression of transferrin receptor and divalent metal transporter-1. Administration of deferoxamine or KC7F2 to hypoxic microglial cells enhanced extracellular signal-regulated kinase (ERK) phosphorylation (p-ERK), but decreased the phosphorylation of p38 (p-p38). The increased p-ERK further phosphorylated the cAMP response element-binding protein (p-CREB) which in turn may have resulted in the increased mitogen activated protein kinase (MAPK) phosphatase 1 (MKP1), known to dephosphorylate MAPKs. Consistent with the decrease in p-p38, the production of pro-inflammatory cytokines TNF-α and IL-1β was reduced in hypoxic microglia treated with deferoxamine and SB 202190, an inhibitor for p38. This suggests that the anti-inflammatory effect exhibited by deferoxamine is by inhibition of p-p38 induced inflammation through the pERK-pCREB-MKP1 pathway, whereas that of KC7F2 requires further investigation. The present results suggest that HIF-1α may mediate iron accumulation in hypoxic microglia and KC7F2, similar to deferoxamine, might provide limited protection against iron induced PWMD.
Journal of Neuropathology and Experimental Neurology | 2017
Charanjit Kaur; Gurugirijha Rathnasamy; Eng-Ang Ling
Microglia exist in different morphological forms in the developing brain. They show a small cell body with scanty cytoplasm with many branching processes in the grey matter of the developing brain. However, in the white matter such as the corpus callosum where the unmyelinated axons are loosely organized, they appear in an amoeboid form having a round cell body endowed with copious cytoplasm rich in organelles. The amoeboid cells eventually transform into ramified microglia in the second postnatal week when the tissue becomes more compact with the onset of myelination. Microglia serve as immunocompetent macrophages that act as neuropathology sensors to detect and respond swiftly to subtle changes in the brain tissues in pathological conditions. Microglial functions are broadly considered as protective in the normal brain development as they phagocytose dead cells and sculpt neuronal connections by pruning excess axons and synapses. They also secrete a number of trophic factors such as insulin-like growth factor-1 and transforming growth factor-β among many others that are involved in neuronal and oligodendrocyte survival. On the other hand, microglial cells when activated produce a plethora of molecules such as proinflammatory cytokines, chemokines, reactive oxygen species, and nitric oxide that are implicated in the pathogenesis of many pathological conditions such as epilepsy, cerebral palsy, autism, and perinatal hypoxic-ischemic brain injury. Although many studies have investigated the origin and functions of the microglia in the developing brain, in-depth in vivo studies along with analysis of their transcriptome and epigenetic changes need to be undertaken to elucidate their full potential be it protective or neurotoxic. This would lead to a better understanding of their roles in the healthy and diseased developing brain and advancement of therapeutic strategies to target microglia-mediated neurotoxicity.
Cns & Neurological Disorders-drug Targets | 2013
Gurugirijha Rathnasamy; Eng-Ang Ling; Charanjit Kaur
Iron is a vital element required by almost all cells for their normal functioning. The well-established role of iron in oxidative metabolism, myelination and synthesis of neurotransmitter makes it an indispensable nutrient required by the brain. Both iron deficiency and excess have been associated with numerous patho-physiologies of the brain, suggesting a need for iron homeostasis. Various studies have reported that the immune effector cells of the brain, the microglial cells, are involved in iron homeostasis in the brain. Microglial cells, which accumulate iron during the developmental period, have a role in myelination process. Along with the increased iron accumulation documented in neurodegenerative diseases, the striking finding is the presence of iron positive microglial cells at the foci of lesion. Though excess iron within activated microglia is demonstrated to enhance the release of pro-inflammatory cytokines and free radicals, a complete understanding of the role of iron in microglia is lacking. The present knowledge on iron mediated changes, in the functions of microglia is summarized in this review.
Progress in Neurobiology | 2018
Gurugirijha Rathnasamy; Wallace S. Foulds; Eng-Ang Ling; Charanjit Kaur
HighlightsRetinal microglia contribute to the purposeful and functional histo‐architecture of the developing and adult retina.Robust microglial activation is detrimental to normal functioning of the retina.Retinal microglial activation is a harbinger of a variety of retinal diseases.Age related changes in microglial phenotype may predispose the retina to age‐related diseases.Activated retinal microglia are a therapeutic target in diseases of the retina. ABSTRACT Microglia, the resident immune cells of the brain and retina, are constantly engaged in the surveillance of their surrounding neural tissue. During embryonic development they infiltrate the retinal tissues and participate in the phagocytosis of redundant neurons. The contribution of microglia in maintaining the purposeful and functional histo‐architecture of the adult retina is indispensable. Within the retinal microenvironment, robust microglial activation is elicited by subtle changes caused by extrinsic and intrinsic factors. When there is a disturbance in the cell‐cell communication between microglia and other retinal cells, for example in retinal injury, the activated microglia can manifest actions that can be detrimental. This is evidenced by activated microglia secreting inflammatory mediators that can further aggravate the retinal injury. Microglial activation as a harbinger of a variety of retinal diseases is well documented by many studies. In addition, a change in the microglial phenotype which may be associated with aging, may predispose the retina to age‐related diseases. In light of the above, the focus of this review is to highlight the role played by microglia in the healthy and diseased retina, based on findings of our own work and from that of others.
Histology and Histopathology | 2014
Gurugirijha Rathnasamy; Eng-Ang Ling; Charanjit Kaur
Cerebral edema/brain edema refers to the accumulation of fluid in the brain and is one of the fatal conditions that require immediate medical attention. Cerebral edema develops as a consequence of cerebral trauma, cerebral infarction, hemorrhages, abscess, tumor, hypoxia, and other toxic or metabolic factors. Based on the causative factors cerebral edema is differentiated into cytotoxic cerebral edema, vasogenic cerebral edema, osmotic and interstitial cerebral edema. Treatment of cerebral edema depends on timely diagnosis and medical assistance. Pragmatic treatment strategies such as antihypertensive medications, nonsteroidal anti-inflammatory drugs, barbiturates, steroids, glutamate and N-methyl-D-aspartate receptor antagonists and trometamol are used in clinical practice. Although the above mentioned treatment approaches are being used, owing to the complexity of the mechanisms involved in cerebral edema, a single therapeutic strategy which could ameliorate cerebral edema is yet to be identified. However, recent experimental studies have suggested that melatonin, a neurohormone produced by the pineal gland, could be an effective alternative for treating cerebral edema. In animal models of stroke, melatonin was not only shown to reduce cerebral edema but also preserved the blood brain barrier. Melatonins beneficial effects were attributed to its properties, such as being a potent anti-oxidant, and its ability to cross the blood brain barrier within minutes after its administration. This review summarizes the beneficial effects of melatonin when used for treating cerebral edema.
The Journal of Neuroscience | 2011
Gurugirijha Rathnasamy; Eng-Ang Ling; Charanjit Kaur