Gwénaël Rabut
European Bioinformatics Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gwénaël Rabut.
Nature Cell Biology | 2004
Gwénaël Rabut; Valérie Doye; Jan Ellenberg
Most cellular activities are executed by multi-protein complexes that form the basic functional modules of their molecular machinery. Proteomic approaches can provide an evermore detailed picture of their composition, but do not reveal how these machines are organized dynamically to accomplish their biological function. Here, we present a method to determine the dissociation rates of protein subunits from complexes that have a traceable localization inside single living cells. As a case study, we systematically analysed the dynamic organization of vertebrate nuclear pore complexes (NPCs), large supramolecular complexes of about 30 different polypeptides. NPC components exhibited a wide range of residence times covering five orders of magnitude from seconds to days. We found the central parts of the NPC to be very stable, consistent with a function as a structural scaffold, whereas more peripheral components exhibited more dynamic behaviour, suggesting adaptor as well as regulatory functions. The presented strategy can be applied to many multi-protein complexes and will help to characterize the dynamic behaviour of complex networks of proteins in live cells.
Nature Cell Biology | 2000
Violaine Moreau; Friedrich Frischknecht; Inge Reckmann; Renaud Vincentelli; Gwénaël Rabut; Donn M. Stewart; Michael Way
Wiskott–Aldrich syndrome protein (WASP) and N-WASP have emerged as key proteins connecting signalling cascades to actin polymerization. Here we show that the amino-terminal WH1 domain, and not the polyproline-rich region, of N-WASP is responsible for its recruitment to sites of actin polymerization during Cdc42-independent, actin-based motility of vaccinia virus. Recruitment of N-WASP to vaccinia is mediated by WASP-interacting protein (WIP), whereas in Shigella WIP is recruited by N-WASP. Our observations show that vaccinia and Shigella activate the Arp2/3 complex to achieve actin-based motility, by mimicking either the SH2/SH3-containing adaptor or Cdc42 signalling pathways to recruit the N-WASP–WIP complex. We propose that the N-WASP–WIP complex has a pivotal function in integrating signalling cascades that lead to actin polymerization.
Journal of Cell Biology | 2008
Elisa Dultz; Esther Zanin; Claudia Wurzenberger; Marion Braun; Gwénaël Rabut; Lucia Sironi; Jan Ellenberg
During mitosis in higher eukaryotes, nuclear pore complexes (NPCs) disassemble in prophase and are rebuilt in anaphase and telophase. NPC formation is hypothesized to occur by the interaction of mitotically stable subcomplexes that form defined structural intermediates. To determine the sequence of events that lead to breakdown and reformation of functional NPCs during mitosis, we present here our quantitative assay based on confocal time-lapse microscopy of single dividing cells. We use this assay to systematically investigate the kinetics of dis- and reassembly for eight nucleoporin subcomplexes relative to nuclear transport in NRK cells, linking the assembly state of the NPC with its function. Our data establish that NPC assembly is an ordered stepwise process that leads to import function already in a partially assembled state. We furthermore find that nucleoporin dissociation does not occur in the reverse order from binding during assembly, which may indicate a distinct mechanism.
Journal of Microscopy | 2004
Gwénaël Rabut; Jan Ellenberg
Live cell imaging has become an indispensable technique for cell biologists. However, when grown on coverslip glass used for live cell imaging many cultured cells move even during relatively short observation times and focus can drift as a result of mechanical instabilities and/or temperature fluctuations. Time‐lapse imaging therefore requires constant adjustment of the imaging field and focus position to keep the cell of interest centred in the imaged volume. We show here that this limitation can be overcome by tracking cells in a fully automated way using the mass centre of cellular fluorescence. Combined with automated multiple location revisiting, this method dramatically increases the throughput of high‐resolution live cell imaging experiments.
Journal of Cell Biology | 2003
Péter Lénárt; Gwénaël Rabut; Nathalie Daigle; Arthur R. Hand; Mark Terasaki; Jan Ellenberg
Breakdown of the nuclear envelope (NE) was analyzed in live starfish oocytes using a size series of fluorescently labeled dextrans, membrane dyes, and GFP-tagged proteins of the nuclear pore complex (NPC) and the nuclear lamina. Permeabilization of the nucleus occurred in two sequential phases. In phase I the NE became increasingly permeable for molecules up to ∼40 nm in diameter, concurrent with a loss of peripheral nuclear pore components over a time course of 10 min. The NE remained intact on the ultrastructural level during this time. In phase II the NE was completely permeabilized within 35 s. This rapid permeabilization spread as a wave from one epicenter on the animal half across the nuclear surface and allowed free diffusion of particles up to ∼100 nm in diameter into the nucleus. While the lamina and nuclear membranes appeared intact at the light microscopic level, a fenestration of the NE was clearly visible by electron microscopy in phase II. We conclude that NE breakdown in starfish oocytes is triggered by slow sequential disassembly of the NPCs followed by a rapidly spreading fenestration of the NE caused by the removal of nuclear pores from nuclear membranes still attached to the lamina.
Molecular and Cellular Biology | 2004
Daniel Forler; Gwénaël Rabut; Francesca D. Ciccarelli; Andrea Herold; Thomas Köcher; Ricarda Niggeweg; Peer Bork; Jan Ellenberg; Elisa Izaurralde
ABSTRACT Metazoan NXF1-p15 heterodimers promote the nuclear export of bulk mRNA across nuclear pore complexes (NPCs). In vitro, NXF1-p15 forms a stable complex with the nucleoporin RanBP2/Nup358, a component of the cytoplasmic filaments of the NPC, suggesting a role for this nucleoporin in mRNA export. We show that depletion of RanBP2 from Drosophila cells inhibits proliferation and mRNA export. Concomitantly, the localization of NXF1 at the NPC is strongly reduced and a significant fraction of this normally nuclear protein is detected in the cytoplasm. Under the same conditions, the steady-state subcellular localization of other nuclear or cytoplasmic proteins and CRM1-mediated protein export are not detectably affected, indicating that the release of NXF1 into the cytoplasm and the inhibition of mRNA export are not due to a general defect in NPC function. The specific role of RanBP2 in the recruitment of NXF1 to the NPC is highlighted by the observation that depletion of CAN/Nup214 also inhibits cell proliferation and mRNA export but does not affect NXF1 localization. Our results indicate that RanBP2 provides a major binding site for NXF1 at the cytoplasmic filaments of the NPC, thereby restricting its diffusion in the cytoplasm after NPC translocation. In RanBP2-depleted cells, NXF1 diffuses freely through the cytoplasm. Consequently, the nuclear levels of the protein decrease and export of bulk mRNA is impaired.
CSH Protocols | 2010
Aurélien Bancaud; Sébastien Huet; Gwénaël Rabut; Jan Ellenberg
The technique of fluorescence recovery after photobleaching (FRAP) was introduced in the mid-1970s to study the diffusion of biomolecules in living cells. For several years, it was used mainly by a small number of biophysicists who had developed their own photobleaching systems. Since the mid-1990s, FRAP has gained increasing popularity because of the conjunction of two factors: First, photobleaching techniques are easily implemented on confocal laser-scanning microscopes (CLSMs), and so FRAP has become available to anyone who has access to such equipment. Second, the advent of green fluorescent protein (GFP) has allowed easy fluorescent tagging of proteins and their observation in living cells. Thanks both to the versatility of modern CLSMs, which allow control of laser intensity at any point of the image, and to the development of new fluorescent probes, additional photoperturbation techniques have emerged during the last few years. After the photoperturbation event, one observes and then analyzes how the fluorescence distribution relaxes toward the steady state. Because the photochemical perturbation of suitable fluorophores is essentially irreversible, changes of fluorescence intensity in the perturbed and unperturbed regions are due to the exchange of tagged molecules between those regions. This article first discusses the materials required for performing FRAP experiments on a CLSM and the software for data analysis. It then describes general considerations on how to perform FRAP experiments as well as the necessary controls. Finally, different possible ways to analyze the data are presented.
Current Biology | 2001
Gwénaël Rabut; Jan Ellenberg
How exactly large molecules translocate through nuclear pores has been mysterious for a long time. Recent kinetic measurements of transport rates through the pore have led to a novel translocation model that elegantly combines selectivity with very high transport rates.
Journal of Cell Biology | 2001
Naïma Belgareh; Gwénaël Rabut; Siau Wei Baï; Megan van Overbeek; Joël Beaudouin; Nathalie Daigle; Olga V. Zatsepina; Fabien Pasteau; Valérie Labas; Micheline Fromont-Racine; Jan Ellenberg; Valérie Doye
Molecular Biology of the Cell | 2004
Isabelle Loïodice; Annabelle Alves; Gwénaël Rabut; Megan van Overbeek; Jan Ellenberg; Jean-Baptiste Sibarita; Valérie Doye