Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gwenola Tosser-Klopp is active.

Publication


Featured researches published by Gwenola Tosser-Klopp.


Nature Biotechnology | 2013

Sequencing and automated whole-genome optical mapping of the genome of a domestic goat ( Capra hircus )

Yang Dong; Min Xie; Yu Jiang; Nianqing Xiao; Xiaoyong Du; Wenguang Zhang; Gwenola Tosser-Klopp; Jinhuan Wang; Shuang Yang; Jie Liang; Wenbin Chen; Jing Chen; Peng Zeng; Yong Hou; Chao Bian; Shengkai Pan; Yuxiang Li; Xin Liu; Wenliang Wang; Bertrand Servin; Brian L Sayre; Bin Zhu; Deacon Sweeney; Rich Moore; Wenhui Nie; Yong-Yi Shen; Ruoping Zhao; Guojie Zhang; Jinquan Li; Thomas Faraut

We report the ∼2.66-Gb genome sequence of a female Yunnan black goat. The sequence was obtained by combining short-read sequencing data and optical mapping data from a high-throughput whole-genome mapping instrument. The whole-genome mapping data facilitated the assembly of super-scaffolds >5× longer by the N50 metric than scaffolds augmented by fosmid end sequencing (scaffold N50 = 3.06 Mb, super-scaffold N50 = 16.3 Mb). Super-scaffolds are anchored on chromosomes based on conserved synteny with cattle, and the assembly is well supported by two radiation hybrid maps of chromosome 1. We annotate 22,175 protein-coding genes, most of which were recovered in the RNA-seq data of ten tissues. Comparative transcriptomic analysis of the primary and secondary follicles of a cashmere goat reveal 51 genes that are differentially expressed between the two types of hair follicles. This study, whose results will facilitate goat genomics, shows that whole-genome mapping technology can be used for the de novo assembly of large genomes.


Endocrinology | 2001

Pregnancy-Associated Plasma Protein-A (PAPP-A) in Ovine, Bovine, Porcine, and Equine Ovarian Follicles: Involvement in IGF Binding Protein-4 Proteolytic Degradation and mRNA Expression During Follicular Development

Sabine Mazerbourg; Michael Toft Overgaard; Claus Oxvig; Michael Christiansen; Cheryl A. Conover; Ingrid Laurendeau; Michel Vidaud; Gwenola Tosser-Klopp; Jürgen Zapf; Philippe Monget

IGF binding protein-4 (IGFBP-4) proteolytic degradation is a common feature of preovulatory follicles from human, ovine, bovine, porcine, and equine ovary. In all these species, the protease is a zinc-dependent metalloprotease and its ability to degrade IGFBP-4 is IGF dependent. The human intrafollicular IGFBP-4-degrading protease has recently been identified as pregnancy-associated plasma protein-A (PAPP-A). The aim of this study was to investigate whether PAPP-A is also involved in IGFBP-4 degradation in ovine, bovine, porcine, and equine preovulatory follicles and to study the expression of PAPP-A mRNA in bovine and porcine granulosa cells from different classes of follicles. Immunoneutralization and immunoprecipitation with polyclonal antibodies raised against human PAPP-A inhibited IGFBP-4 proteolytic degradation in preovulatory follicular fluid from the four species studied. As previously reported for the intrafollicular proteolytic activity degrading IGFBP-4, recombinant human PAPP-A generated in v...


Genome Biology | 2015

Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project

Leif Andersson; Alan Archibald; C. D. K. Bottema; Rudiger Brauning; Shane C. Burgess; Dave Burt; E. Casas; Hans H. Cheng; Laura Clarke; Christine Couldrey; Brian P. Dalrymple; Christine G. Elsik; Sylvain Foissac; Elisabetta Giuffra; M.A.M. Groenen; Ben J. Hayes; LuSheng S Huang; Hassan Khatib; James W. Kijas; Heebal Kim; Joan K. Lunney; Fiona M. McCarthy; J. C. McEwan; Stephen S. Moore; Bindu Nanduri; Cedric Notredame; Yniv Palti; Graham Plastow; James M. Reecy; G. A. Rohrer

We describe the organization of a nascent international effort, the Functional Annotation of Animal Genomes (FAANG) project, whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species.


PLOS ONE | 2014

Design and Characterization of a 52K SNP Chip for Goats

Gwenola Tosser-Klopp; Philippe Bardou; Olivier Bouchez; Cédric Cabau; R.P.M.A. Crooijmans; Yang Dong; Cécile Donnadieu-Tonon; A. Eggen; H.C.M. Heuven; Saadiah Jamli; Abdullah Johari Jiken; Christophe Klopp; Cynthia T. Lawley; J. C. McEwan; Patrice Martin; Carole Moreno; Philippe Mulsant; Ibouniyamine Nabihoudine; Eric Pailhoux; Isabelle Palhiere; Rachel Rupp; Julien Sarry; Brian L Sayre; Aurélie Tircazes; Jun Wang; Wen Wang; Wenguang Zhang

The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a 50–60,000 SNP chip for goats. The success of a moderate density SNP assay depends on reliable bioinformatic SNP detection procedures, the technological success rate of the SNP design, even spacing of SNPs on the genome and selection of Minor Allele Frequencies (MAF) suitable to use in diverse breeds. Through the federation of three SNP discovery projects consolidated as the International Goat Genome Consortium, we have identified approximately twelve million high quality SNP variants in the goat genome stored in a database together with their biological and technical characteristics. These SNPs were identified within and between six breeds (meat, milk and mixed): Alpine, Boer, Creole, Katjang, Saanen and Savanna, comprising a total of 97 animals. Whole genome and Reduced Representation Library sequences were aligned on >10 kb scaffolds of the de novo goat genome assembly. The 60,000 selected SNPs, evenly spaced on the goat genome, were submitted for oligo manufacturing (Illumina, Inc) and published in dbSNP along with flanking sequences and map position on goat assemblies (i.e. scaffolds and pseudo-chromosomes), sheep genome V2 and cattle UMD3.1 assembly. Ten breeds were then used to validate the SNP content and 52,295 loci could be successfully genotyped and used to generate a final cluster file. The combined strategy of using mainly whole genome Next Generation Sequencing and mapping on a contig genome assembly, complemented with Illumina design tools proved to be efficient in producing this GoatSNP50 chip. Advances in use of molecular markers are expected to accelerate goat genomic studies in coming years.


PLOS Genetics | 2013

Genome-Wide Association Studies Identify Two Novel BMP15 Mutations Responsible for an Atypical Hyperprolificacy Phenotype in Sheep

Julie Demars; Stéphane Fabre; Julien Sarry; Raffaella Rossetti; Hélène Gilbert; Luca Persani; Gwenola Tosser-Klopp; Philippe Mulsant; Zuzanna Nowak; Wioleta Drobik; Elzbieta Martyniuk; Loys Bodin

Some sheep breeds are naturally prolific, and they are very informative for the studies of reproductive genetics and physiology. Major genes increasing litter size (LS) and ovulation rate (OR) were suspected in the French Grivette and the Polish Olkuska sheep populations, respectively. To identify genetic variants responsible for the highly prolific phenotype in these two breeds, genome-wide association studies (GWAS) followed by complementary genetic and functional analyses were performed. Highly prolific ewes (cases) and normal prolific ewes (controls) from each breed were genotyped using the Illumina OvineSNP50 Genotyping Beadchip. In both populations, an X chromosome region, close to the BMP15 gene, harbored clusters of markers with suggestive evidence of association at significance levels between 1E−05 and 1E−07. The BMP15 candidate gene was then sequenced, and two novel non-conservative mutations called FecXGr and FecXO were identified in the Grivette and Olkuska breeds, respectively. The two mutations were associated with the highly prolific phenotype (pFecXGr = 5.98E−06 and pFecXO = 2.55E−08). Homozygous ewes for the mutated allele showed a significantly increased prolificacy (FecXGr/FecXGr, LS = 2.50±0.65 versus FecX+/FecXGr, LS = 1.93±0.42, p<1E−03 and FecXO/FecXO, OR = 3.28±0.85 versus FecX+/FecXO, OR = 2.02±0.47, p<1E−03). Both mutations are located in very well conserved motifs of the protein and altered the BMP15 signaling activity in vitro using a BMP-responsive luciferase test in COV434 granulosa cells. Thus, we have identified two novel mutations in the BMP15 gene associated with increased LS and OR. Notably, homozygous FecXGr/FecXGr Grivette and homozygous FecXO/FecXO Olkuska ewes are hyperprolific in striking contrast with the sterility exhibited by all other known homozygous BMP15 mutations. Our results bring new insights into the key role played by the BMP15 protein in ovarian function and could contribute to a better understanding of the pathogenesis of women′s fertility disorders.


Mammalian Genome | 2003

Contribution to high-resolution mapping in pigs with 101 type I markers and progress in comparative map between humans and pigs.

Y. Lahbib-Mansais; Gwenola Tosser-Klopp; Sophie Leroux; Cédric Cabau; Emmanuelle Karsenty; Denis Milan; Emmanuel Barillot; M. Yerle; François Hatey; J. Gellin

In the frame of the European program GenetPig, we localized on the Pig map 105 coding sequences (type I markers) from different origins, using INRA-University of Minnesota porcine Radiation Hybrid Panel (IMpRH, 101 markers) and somatic cell hybrid panel (SCHP, 93 markers, of which only four were not also mapped using IMpRH). Thus, we contributed to the improvement of the porcine high-resolution map, and we complemented the integration between the RH and cytogenetic maps. IMpRH tools allowed us to map 101 new markers relatively to reference markers of the first generation radiation hybrid map. Ninety out of 101 markers are linked to an already mapped marker with a LOD score greater than 4.8. Seventy-eight markers were informative for comparative mapping. Comparison of marker positions on the RH map with those obtained on the cytogenetic map or those expected by Human-Pig comparative map data suggested to us to be cautious with markers linked with a LOD lower than 6. These results allowed us to specify chromosomal fragments well conserved between humans and pigs and also to suggest new correspondences (Sscr1-Hsap3, Sscr9-Hsap9, Sscr13-Hsap11, Sscr15-Hsap6) confirmed by FISH on pig chromosomes. We examined in more detail the comparative map between Hsap12 and Sscr5 considering gene order, which suggests that rearrangements have occurred within the conserved synteny.


PLOS ONE | 2014

Selection Signatures in Worldwide Sheep Populations

Maria-Ines Fariello; Bertrand Servin; Gwenola Tosser-Klopp; Rachelle Rupp; Carole Moreno; Magali San Cristobal; Simon Boitard

The diversity of populations in domestic species offers great opportunities to study genome response to selection. The recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly identified regions, together with the ones previously identified, reveal the extensive genome response to selection on morphology, color and adaptation to new environments.


BMC Genomics | 2011

Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by Laser Capture Microdissection

Agnès Bonnet; Claudia Bevilacqua; Francis Benne; Loys Bodin; Corinne Cotinot; Laurence Liaubet; Magali SanCristobal; Julien Sarry; Elena Terenina; Patrice Martin; Gwenola Tosser-Klopp; Beatrice Mandon-Pepin

BackgroundSuccessful achievement of early folliculogenesis is crucial for female reproductive function. The process is finely regulated by cell-cell interactions and by the coordinated expression of genes in both the oocyte and in granulosa cells. Despite many studies, little is known about the cell-specific gene expression driving early folliculogenesis. The very small size of these follicles and the mixture of types of follicles within the developing ovary make the experimental study of isolated follicular components very difficult.The recently developed laser capture microdissection (LCM) technique coupled with microarray experiments is a promising way to address the molecular profile of pure cell populations. However, one main challenge was to preserve the RNA quality during the isolation of single cells or groups of cells and also to obtain sufficient amounts of RNA.Using a new LCM method, we describe here the separate expression profiles of oocytes and follicular cells during the first stages of sheep folliculogenesis.ResultsWe developed a new tissue fixation protocol ensuring efficient single cell capture and RNA integrity during the microdissection procedure. Enrichment in specific cell types was controlled by qRT-PCR analysis of known genes: six oocyte-specific genes (SOHLH2, MAEL, MATER, VASA, GDF9, BMP15) and three granulosa cell-specific genes (KL, GATA4, AMH).A global gene expression profile for each follicular compartment during early developmental stages was identified here for the first time, using a bovine Affymetrix chip. Most notably, the granulosa cell dataset is unique to date. The comparison of oocyte vs. follicular cell transcriptomes revealed 1050 transcripts specific to the granulosa cell and 759 specific to the oocyte.Functional analyses allowed the characterization of the three main cellular events involved in early folliculogenesis and confirmed the relevance and potential of LCM-derived RNA.ConclusionsThe ovary is a complex mixture of different cell types. Distinct cell populations need therefore to be analyzed for a better understanding of their potential interactions. LCM and microarray analysis allowed us to identify novel gene expression patterns in follicular cells at different stages and in oocyte populations.


Biology of Reproduction | 2002

Glutathione S-Transferase Alpha Expressed in Porcine Sertoli Cells Is under the Control of Follicle-Stimulating Hormone and Testosterone

Lamia Benbrahim-Tallaa; Eric Tabone; Gwenola Tosser-Klopp; François Hatey; Mohamed Benahmed

Abstract Glutathione S-transferases (GSTs) are a family of detoxification isoenzymes present in different tissues including the testis and that conjugate many toxic substrates to glutathione. Among these substrates are carcinogens, mutagens and products of oxidative processes. In the present report we show that GSTα is expressed in somatic testicular Leydig cells and Sertoli cells. GSTα expression in Sertoli cells is under the hormonal control of FSH, testosterone, and estradiol. In Leydig cells, immunoreactive GSTα was present at the neonatal, pubertal, and adult periods. In Sertoli cells, GSTα was predominant in pubertal and adult testes (but not in neonatal testes), suggesting that its expression is controlled by gonadotropins. The regulatory action and the mechanisms of action of FSH and testosterone on GSTα mRNA and protein levels were studied by using a model of primary cultures of porcine testicular Sertoli cells. FSH increased GSTα mRNA levels in a dose-dependent manner (ED50 = 18.5 nm/ml) with a maximal effect observed after 48 h of exposure (a 3-fold increase; P < 0.001). In addition, FSH increased GSTα protein, which was detected as a doublet of 28 kDa. Treatment with testosterone enhanced GSTα mRNA levels in a dose-dependent (ED50 = 1.4 ng/ml) and time-dependent manner with a maximal effect delayed at 8 h of exposure (a 2-fold increase; P < 0.001). Similarly, Sertoli cell treatment with testosterone metabolites, dihydrotestosterone (DHT) and estradiol, led to an increase in GSTα mRNA levels. Because stimulatory effects of FSH and androgens were also observed on GSTα protein, we therefore had to determine whether the different hormones were affecting GSTα gene transcriptional activity, or GSTα mRNA stability, or both. FSH and 8-Br-cAMP (but not testosterone) increased the stability of GSTα mRNA. The effects of FSH and testosterone on GSTα protein were additive, confirming that both hormones act through distinct mechanisms on the expression of the enzyme. Taken together, the present observations indicate that Sertoli cell GSTα is targeted by FSH, testosterone, and its metabolites, and they reinforce the concept that Sertoli cells exert a protective role and are under endocrine control to ward against toxic agents in the context of Sertoli-germ cell interactions during spermatogenesis.


Animal Genetics | 2013

Genetic diversity and investigation of polledness in divergent goat populations using 52 088 SNPs

James W. Kijas; Judit S. Ortiz; Russell McCulloch; Andrew T. James; Blair Brice; Ben Swain; Gwenola Tosser-Klopp

The recent availability of a genome-wide SNP array for the goat genome dramatically increases the power to investigate aspects of genetic diversity and to conduct genome-wide association studies in this important domestic species. We collected and analysed genotypes from 52 088 SNPs in Boer, Cashmere and Rangeland goats that had both polled and horned individuals. Principal components analysis revealed a clear genetic division between animals for each population, and model-based clustering successfully detected evidence of admixture that matched aspects of their recorded history. For example, shared co-ancestry was detected, suggesting Boer goats have been introgressed into the Rangeland population. Further, allele frequency data successfully tracked the altered genetic profile that has taken place after 40 years of breeding Australian Cashmere goats using the Rangeland animals as the founding population. Genome-wide association mapping of the POLL locus revealed a strong signal on goat chromosome 1. The 769-kb critical interval contained the polled intersex syndrome locus, confirming the genetic basis in non-European animals is the same as identified previously in Saanen goats. Interestingly, analysis of the haplotypes carried by a small set of sex-reversed animals, known to be associated with polledness, revealed some animals carried the wild-type chromosome associated with the presence of horns. This suggests a more complex basis for the relationship between polledness and the intersex condition than initially thought while validating the application of the goat SNP50 BeadChip for fine-mapping traits in goat.

Collaboration


Dive into the Gwenola Tosser-Klopp's collaboration.

Top Co-Authors

Avatar

Agnès Bonnet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Palhiere

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Rachel Rupp

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Julien Sarry

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

François Hatey

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christophe Klopp

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christèle Robert-Granié

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Philippe Mulsant

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Magali SanCristobal

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Philippe Bardou

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge