Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Palhiere is active.

Publication


Featured researches published by Isabelle Palhiere.


PLOS ONE | 2014

Design and Characterization of a 52K SNP Chip for Goats

Gwenola Tosser-Klopp; Philippe Bardou; Olivier Bouchez; Cédric Cabau; R.P.M.A. Crooijmans; Yang Dong; Cécile Donnadieu-Tonon; A. Eggen; H.C.M. Heuven; Saadiah Jamli; Abdullah Johari Jiken; Christophe Klopp; Cynthia T. Lawley; J. C. McEwan; Patrice Martin; Carole Moreno; Philippe Mulsant; Ibouniyamine Nabihoudine; Eric Pailhoux; Isabelle Palhiere; Rachel Rupp; Julien Sarry; Brian L Sayre; Aurélie Tircazes; Jun Wang; Wen Wang; Wenguang Zhang

The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a 50–60,000 SNP chip for goats. The success of a moderate density SNP assay depends on reliable bioinformatic SNP detection procedures, the technological success rate of the SNP design, even spacing of SNPs on the genome and selection of Minor Allele Frequencies (MAF) suitable to use in diverse breeds. Through the federation of three SNP discovery projects consolidated as the International Goat Genome Consortium, we have identified approximately twelve million high quality SNP variants in the goat genome stored in a database together with their biological and technical characteristics. These SNPs were identified within and between six breeds (meat, milk and mixed): Alpine, Boer, Creole, Katjang, Saanen and Savanna, comprising a total of 97 animals. Whole genome and Reduced Representation Library sequences were aligned on >10 kb scaffolds of the de novo goat genome assembly. The 60,000 selected SNPs, evenly spaced on the goat genome, were submitted for oligo manufacturing (Illumina, Inc) and published in dbSNP along with flanking sequences and map position on goat assemblies (i.e. scaffolds and pseudo-chromosomes), sheep genome V2 and cattle UMD3.1 assembly. Ten breeds were then used to validate the SNP content and 52,295 loci could be successfully genotyped and used to generate a final cluster file. The combined strategy of using mainly whole genome Next Generation Sequencing and mapping on a contig genome assembly, complemented with Illumina design tools proved to be efficient in producing this GoatSNP50 chip. Advances in use of molecular markers are expected to accelerate goat genomic studies in coming years.


Journal of Dairy Science | 2014

Prediction of fatty acid profiles in cow, ewe, and goat milk by mid-infrared spectrometry

M. Ferrand-Calmels; Isabelle Palhiere; M. Brochard; O. Leray; J.M. Astruc; Marie-Rose Aurel; S. Barbey; Frédéric Bouvier; P. Brunschwig; Hugues Caillat; M. Douguet; F. Faucon-Lahalle; M. Gelé; G. Thomas; J.M. Trommenschlager; Helene Larroque

Mid-infrared (MIR) spectrometry was used to estimate the fatty acid (FA) composition in cow, ewe, and goat milk. The objectives were to compare different statistical approaches with wavelength selection to predict the milk FA composition from MIR spectra, and to develop equations for FA in cow, goat, and ewe milk. In total, a set of 349 cow milk samples, 200 ewe milk samples, and 332 goat milk samples were both analyzed by MIR and by gas chromatography, the reference method. A broad FA variability was ensured by using milk from different breeds and feeding systems. The methods studied were partial least squares regression (PLS), first-derivative pretreatment + PLS, genetic algorithm + PLS, wavelets + PLS, least absolute shrinkage and selection operator method (LASSO), and elastic net. The best results were obtained with PLS, genetic algorithm + PLS and first derivative + PLS. The residual standard deviation and the coefficient of determination in external validation were used to characterize the equations and to retain the best for each FA in each species. In all cases, the predictions were of better quality for FA found at medium to high concentrations (i.e., for saturated FA and some monounsaturated FA with a coefficient of determination in external validation >0.90). The conversion of the FA expressed in grams per 100mL of milk to grams per 100g of FA was possible with a small loss of accuracy for some FA.


Journal of Dairy Science | 2013

A first step toward genomic selection in the multi-breed French dairy goat population.

C. Carillier; Helene Larroque; Isabelle Palhiere; Virginie Clément; Rachel Rupp; Christèle Robert-Granié

The objectives of this study were to describe, using the goat SNP50 BeadChip (Illumina Inc., San Diego, CA), molecular data for the French dairy goat population and compare the effect of using genomic information on breeding value accuracy in different reference populations. Several multi-breed (Alpine and Saanen) reference population sizes, including or excluding female genotypes (from 67 males to 677 males, and 1,985 females), were used. Genomic evaluations were performed using genomic best linear unbiased predictor for milk production traits, somatic cell score, and some udder type traits. At a marker distance of 50kb, the average r(2) (squared correlation coefficient) value of linkage disequilibrium was 0.14, and persistence of linkage disequilibrium as correlation of r-values among Saanen and Alpine breeds was 0.56. Genomic evaluation accuracies obtained from cross validation ranged from 36 to 53%. Biases of these estimations assessed by regression coefficients (from 0.73 to 0.98) of phenotypes on genomic breeding values were higher for traits such as protein yield than for udder type traits. Using the reference population that included all males and females, accuracies of genomic breeding values derived from prediction error variances (model accuracy) obtained for young buck candidates without phenotypes ranged from 52 to 56%. This was lower than the average pedigree-derived breeding value accuracies obtained at birth for these males from the official genetic evaluation (62%). Adding females to the reference population of 677 males improved accuracy by 5 to 9% depending on the trait considered. Gains in model accuracies of genomic breeding values ranged from 1 to 7%, lower than reported in other studies. The gains in breeding value accuracy obtained using genomic information were not as good as expected because of the limited size (at most 677 males and 1,985 females) and the structure of the reference population.


Journal of Animal Science | 2010

Pedigree analysis of seven small French sheep populations and implications for the management of rare breeds.

Coralie Danchin-Burge; Isabelle Palhiere; Dominique François; Bernard Bibé; Grégoire Leroy; Etienne Verrier

Pedigree information was analyzed in 7 small populations of sheep raised in France (Bleu du Maine, Charmoise, Cotentin, on-farm Romanov, Romanov ex situ in vivo, Roussin de la Hague, Solognote) to estimate their genetic variability. The pedigree information for each breed, estimated by the number of equivalent generations traced, ranged from rather poor (4.6) to very good (10.5) when compared with other studies. On the basis of probabilities of gene origin, the effective number of ancestors ranged from 17 (on-farm Romanov breed) to 59 (Bleu du Maine). On the basis of the rate of inbreeding, the realized effective size was found to range from 65 (Romanov breed ex situ) to 231 (Bleu du Maine). The average kinship coefficients between rams from which semen doses are available in the French National Cryobank and the active ram and ewe populations were also computed. Results found in each breed were analyzed by taking into consideration the demographic evolution of the breeds, their management practices, and the use of cryopreservation as a way to preserve genetic variability. It appeared quite clear that, in populations in which AI with frozen semen is seldom used, factors that mainly affect the genetic variability are the female-to-male ratio, which should be as small as possible, and the number of reproducing female offspring by males, which should be as balanced as possible. Finally, our work showed that all populations under study have fairly good genetic variability in comparison with other species, despite their scarce numbers.


Journal of Animal Science | 2013

Potential benefits of genomic selection on genetic gain of small ruminant breeding programs.

F. Shumbusho; J. Raoul; J. M. Astruc; Isabelle Palhiere; J. M. Elsen

In conventional small ruminant breeding programs, only pedigree and phenotype records are used to make selection decisions but prospects of including genomic information are now under consideration. The objective of this study was to assess the potential benefits of genomic selection on the genetic gain in French sheep and goat breeding designs of today. Traditional and genomic scenarios were modeled with deterministic methods for 3 breeding programs. The models included decisional variables related to male selection candidates, progeny testing capacity, and economic weights that were optimized to maximize annual genetic gain (AGG) of i) a meat sheep breeding program that improved a meat trait of heritability (h(2)) = 0.30 and a maternal trait of h(2) = 0.09 and ii) dairy sheep and goat breeding programs that improved a milk trait of h(2) = 0.30. Values of ±0.20 of genetic correlation between meat and maternal traits were considered to study their effects on AGG. The Bulmer effect was accounted for and the results presented here are the averages of AGG after 10 generations of selection. Results showed that current traditional breeding programs provide an AGG of 0.095 genetic standard deviation (σa) for meat and 0.061 σa for maternal trait in meat breed and 0.147 σa and 0.120 σa in sheep and goat dairy breeds, respectively. By optimizing decisional variables, the AGG with traditional selection methods increased to 0.139 σa for meat and 0.096 σa for maternal traits in meat breeding programs and to 0.174 σa and 0.183 σa in dairy sheep and goat breeding programs, respectively. With a medium-sized reference population (nref) of 2,000 individuals, the best genomic scenarios gave an AGG that was 17.9% greater than with traditional selection methods with optimized values of decisional variables for combined meat and maternal traits in meat sheep, 51.7% in dairy sheep, and 26.2% in dairy goats. The superiority of genomic schemes increased with the size of the reference population and genomic selection gave the best results when nref > 1,000 individuals for dairy breeds and nref > 2,000 individuals for meat breed. Genetic correlation between meat and maternal traits had a large impact on the genetic gain of both traits. Changes in AGG due to correlation were greatest for low heritable maternal traits. As a general rule, AGG was increased both by optimizing selection designs and including genomic information.


Animal | 2016

Economic evaluation of genomic selection in small ruminants: a sheep meat breeding program

Félicien Shumbusho; Jérome Raoul; Jean-Michel Astruc; Isabelle Palhiere; Stéphane Lemarié; Aline Fugeray-Scarbel; Jean Michel Elsen

Recent genomic evaluation studies using real data and predicting genetic gain by modeling breeding programs have reported moderate expected benefits from the replacement of classic selection schemes by genomic selection (GS) in small ruminants. The objectives of this study were to compare the cost, monetary genetic gain and economic efficiency of classic selection and GS schemes in the meat sheep industry. Deterministic methods were used to model selection based on multi-trait indices from a sheep meat breeding program. Decisional variables related to male selection candidates and progeny testing were optimized to maximize the annual monetary genetic gain (AMGG), that is, a weighted sum of meat and maternal traits annual genetic gains. For GS, a reference population of 2000 individuals was assumed and genomic information was available for evaluation of male candidates only. In the classic selection scheme, males breeding values were estimated from own and offspring phenotypes. In GS, different scenarios were considered, differing by the information used to select males (genomic only, genomic+own performance, genomic+offspring phenotypes). The results showed that all GS scenarios were associated with higher total variable costs than classic selection (if the cost of genotyping was 123 euros/animal). In terms of AMGG and economic returns, GS scenarios were found to be superior to classic selection only if genomic information was combined with their own meat phenotypes (GS-Pheno) or with their progeny test information. The predicted economic efficiency, defined as returns (proportional to number of expressions of AMGG in the nucleus and commercial flocks) minus total variable costs, showed that the best GS scenario (GS-Pheno) was up to 15% more efficient than classic selection. For all selection scenarios, optimization increased the overall AMGG, returns and economic efficiency. As a conclusion, our study shows that some forms of GS strategies are more advantageous than classic selection, provided that GS is already initiated (i.e. the initial reference population is available). Optimizing decisional variables of the classic selection scheme could be of greater benefit than including genomic information in optimized designs.


PLOS ONE | 2016

Genome Wide Association Study Identifies New Loci Associated with Undesired Coat Color Phenotypes in Saanen Goats

Pauline Martin; Isabelle Palhiere; Anne Ricard; Gwenola Tosser-Klopp; Rachel Rupp

This paper reports a quantitative genetics and genomic analysis of undesirable coat color patterns in goats. Two undesirable coat colors have routinely been recorded for the past 15 years in French Saanen goats. One fifth of Saanen females have been phenotyped “pink” (8.0%) or “pink neck” (11.5%) and consequently have not been included in the breeding program as elite animals. Heritability of the binary “pink” and “pink neck” phenotype, estimated from 103,443 females was 0.26 for “pink” and 0.21 for “pink neck”. Genome wide association studies (using haplotypes or single SNPs) were implemented using a daughter design of 810 Saanen goats sired by 9 Artificial Insemination bucks genotyped with the goatSNP50 chip. A highly significant signal (-log10pvalue = 10.2) was associated with the “pink neck” phenotype on chromosome 11, suggesting the presence of a major gene. Highly significant signals for the “pink” phenotype were found on chromosomes 5 and 13 (-log10p values of 7.2 and, 7.7 respectively). The most significant SNP on chromosome 13 was in the ASIP gene region, well known for its association with coat color phenotypes. Nine significant signals were also found for both traits. The highest signal for each trait was detected by both single SNP and haplotype approaches, whereas the smaller signals were not consistently detected by the two methods. Altogether these results demonstrated a strong genetic control of the “pink” and “pink neck” phenotypes in French Saanen goats suggesting that SNP information could be used to identify and remove undesired colored animals from the breeding program.


Animal Genetics | 2012

An ABC estimate of pedigree error rate: application in dog, sheep and cattle breeds

Grégoire Leroy; Coralie Danchin-Burge; Isabelle Palhiere; Roswitha Baumung; S. Fritz; J-Claude Meriaux; Mathieu Gautier

On the basis of correlations between pairwise individual genealogical kinship coefficients and allele sharing distances computed from genotyping data, we propose an approximate Bayesian computation (ABC) approach to assess pedigree file reliability through gene-dropping simulations. We explore the features of the method using simulated data sets and show precision increases with the number of markers. An application is further made with five dog breeds, four sheep breeds and one cattle breed raised in France and displaying various characteristics and population sizes, using microsatellite or SNP markers. Depending on the breeds, pedigree error estimations range between 1% and 9% in dog breeds, 1% and 10% in sheep breeds and 4% in cattle breeds.


Scientific Reports | 2017

A genome scan for milk production traits in dairy goats reveals two new mutations in Dgat1 reducing milk fat content

Pauline Martin; Isabelle Palhiere; Cyrielle Maroteau; Philippe Bardou; Kamila Canale-Tabet; Julien Sarry; Florent Woloszyn; Justine Bertrand-Michel; Ines Racke; Hüseyin Besir; Rachel Rupp; Gwenola Tosser-Klopp

The quantity of milk and milk fat and proteins are particularly important traits in dairy livestock. However, little is known about the regions of the genome that influence these traits in goats. We conducted a genome wide association study in French goats and identified 109 regions associated with dairy traits. For a major region on chromosome 14 closely associated with fat content, the Diacylglycerol O-Acyltransferase 1 (DGAT1) gene turned out to be a functional and positional candidate gene. The caprine reference sequence of this gene was completed and 29 polymorphisms were found in the gene sequence, including two novel exonic mutations: R251L and R396W, leading to substitutions in the protein sequence. The R251L mutation was found in the Saanen breed at a frequency of 3.5% and the R396W mutation both in the Saanen and Alpine breeds at a frequencies of 13% and 7% respectively. The R396W mutation explained 46% of the genetic variance of the trait, and the R251L mutation 6%. Both mutations were associated with a notable decrease in milk fat content. Their causality was then demonstrated by a functional test. These results provide new knowledge on the genetic basis of milk synthesis and will help improve the management of the French dairy goat breeding program.


Journal of Dairy Science | 2016

Heritability and genome-wide association mapping for supernumerary teats in French Alpine and Saanen dairy goats

Pauline Martin; Isabelle Palhiere; Gwenola Tosser-Klopp; Rachel Rupp

This paper reports a quantitative genetics and genomic analysis of undesired presence of supernumerary teats (SNT) in goats. Supernumerary teats are a problem in goat breeding as they can considerably impede machine milking efficiency, leading to increased milking time and injury. This phenotype has routinely been recorded for the past 15 yr in French Alpine and Saanen goats. Around 4% of the females had been assigned the SNT phenotype and consequently could not be included in the breeding program as elite animals. The heritability of this binary trait, estimated by applying linear logistic polygenic models to 32,908 Alpine and 23,217 Saanen females, was 0.40 and 0.44, respectively. A genome-wide association study was implemented using a daughter design composed of 810 Saanen goats sired by 9 artificial insemination bucks and 1,185 Alpine goats sired by 11 bucks, genotyped with the goatSNP50 chip (Illumina Inc., San Diego, CA). This association study was based on logistic polygenic models, one with separately taken single nucleotide polymorphisms and the other with haplotypes as fixed effects. The 2 breeds were analyzed together and separately. No region was found to be significant at the genome level, but 17 regions on 10 chromosomes were significant at the chromosome level. These signals were always only slightly above the chromosome significance threshold and only a few of them overlapped across analyses. No evidence of segregation of a major gene in our Saanen and Alpine populations was observed, suggesting that SNT presence is inherited in a polygenic fashion. This conclusion regarding SNT determinism agrees with recent association analyses in cattle, and one locus was even found in an orthologous region. The possibility of applying markers-based selection on the SNT trait is therefore unlikely, but, as this trait is heritable and routinely recorded, it could be managed by attributing a dedicated estimated breeding value.

Collaboration


Dive into the Isabelle Palhiere's collaboration.

Top Co-Authors

Avatar

Rachel Rupp

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Helene Larroque

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrice Martin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Louis Peyraud

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis Barillet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Julien Sarry

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge