Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Julien Sarry is active.

Publication


Featured researches published by Julien Sarry.


PLOS ONE | 2014

Design and Characterization of a 52K SNP Chip for Goats

Gwenola Tosser-Klopp; Philippe Bardou; Olivier Bouchez; Cédric Cabau; R.P.M.A. Crooijmans; Yang Dong; Cécile Donnadieu-Tonon; A. Eggen; H.C.M. Heuven; Saadiah Jamli; Abdullah Johari Jiken; Christophe Klopp; Cynthia T. Lawley; J. C. McEwan; Patrice Martin; Carole Moreno; Philippe Mulsant; Ibouniyamine Nabihoudine; Eric Pailhoux; Isabelle Palhiere; Rachel Rupp; Julien Sarry; Brian L Sayre; Aurélie Tircazes; Jun Wang; Wen Wang; Wenguang Zhang

The success of Genome Wide Association Studies in the discovery of sequence variation linked to complex traits in humans has increased interest in high throughput SNP genotyping assays in livestock species. Primary goals are QTL detection and genomic selection. The purpose here was design of a 50–60,000 SNP chip for goats. The success of a moderate density SNP assay depends on reliable bioinformatic SNP detection procedures, the technological success rate of the SNP design, even spacing of SNPs on the genome and selection of Minor Allele Frequencies (MAF) suitable to use in diverse breeds. Through the federation of three SNP discovery projects consolidated as the International Goat Genome Consortium, we have identified approximately twelve million high quality SNP variants in the goat genome stored in a database together with their biological and technical characteristics. These SNPs were identified within and between six breeds (meat, milk and mixed): Alpine, Boer, Creole, Katjang, Saanen and Savanna, comprising a total of 97 animals. Whole genome and Reduced Representation Library sequences were aligned on >10 kb scaffolds of the de novo goat genome assembly. The 60,000 selected SNPs, evenly spaced on the goat genome, were submitted for oligo manufacturing (Illumina, Inc) and published in dbSNP along with flanking sequences and map position on goat assemblies (i.e. scaffolds and pseudo-chromosomes), sheep genome V2 and cattle UMD3.1 assembly. Ten breeds were then used to validate the SNP content and 52,295 loci could be successfully genotyped and used to generate a final cluster file. The combined strategy of using mainly whole genome Next Generation Sequencing and mapping on a contig genome assembly, complemented with Illumina design tools proved to be efficient in producing this GoatSNP50 chip. Advances in use of molecular markers are expected to accelerate goat genomic studies in coming years.


PLOS Genetics | 2013

Genome-Wide Association Studies Identify Two Novel BMP15 Mutations Responsible for an Atypical Hyperprolificacy Phenotype in Sheep

Julie Demars; Stéphane Fabre; Julien Sarry; Raffaella Rossetti; Hélène Gilbert; Luca Persani; Gwenola Tosser-Klopp; Philippe Mulsant; Zuzanna Nowak; Wioleta Drobik; Elzbieta Martyniuk; Loys Bodin

Some sheep breeds are naturally prolific, and they are very informative for the studies of reproductive genetics and physiology. Major genes increasing litter size (LS) and ovulation rate (OR) were suspected in the French Grivette and the Polish Olkuska sheep populations, respectively. To identify genetic variants responsible for the highly prolific phenotype in these two breeds, genome-wide association studies (GWAS) followed by complementary genetic and functional analyses were performed. Highly prolific ewes (cases) and normal prolific ewes (controls) from each breed were genotyped using the Illumina OvineSNP50 Genotyping Beadchip. In both populations, an X chromosome region, close to the BMP15 gene, harbored clusters of markers with suggestive evidence of association at significance levels between 1E−05 and 1E−07. The BMP15 candidate gene was then sequenced, and two novel non-conservative mutations called FecXGr and FecXO were identified in the Grivette and Olkuska breeds, respectively. The two mutations were associated with the highly prolific phenotype (pFecXGr = 5.98E−06 and pFecXO = 2.55E−08). Homozygous ewes for the mutated allele showed a significantly increased prolificacy (FecXGr/FecXGr, LS = 2.50±0.65 versus FecX+/FecXGr, LS = 1.93±0.42, p<1E−03 and FecXO/FecXO, OR = 3.28±0.85 versus FecX+/FecXO, OR = 2.02±0.47, p<1E−03). Both mutations are located in very well conserved motifs of the protein and altered the BMP15 signaling activity in vitro using a BMP-responsive luciferase test in COV434 granulosa cells. Thus, we have identified two novel mutations in the BMP15 gene associated with increased LS and OR. Notably, homozygous FecXGr/FecXGr Grivette and homozygous FecXO/FecXO Olkuska ewes are hyperprolific in striking contrast with the sterility exhibited by all other known homozygous BMP15 mutations. Our results bring new insights into the key role played by the BMP15 protein in ovarian function and could contribute to a better understanding of the pathogenesis of women′s fertility disorders.


BMC Genomics | 2011

Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by Laser Capture Microdissection

Agnès Bonnet; Claudia Bevilacqua; Francis Benne; Loys Bodin; Corinne Cotinot; Laurence Liaubet; Magali SanCristobal; Julien Sarry; Elena Terenina; Patrice Martin; Gwenola Tosser-Klopp; Beatrice Mandon-Pepin

BackgroundSuccessful achievement of early folliculogenesis is crucial for female reproductive function. The process is finely regulated by cell-cell interactions and by the coordinated expression of genes in both the oocyte and in granulosa cells. Despite many studies, little is known about the cell-specific gene expression driving early folliculogenesis. The very small size of these follicles and the mixture of types of follicles within the developing ovary make the experimental study of isolated follicular components very difficult.The recently developed laser capture microdissection (LCM) technique coupled with microarray experiments is a promising way to address the molecular profile of pure cell populations. However, one main challenge was to preserve the RNA quality during the isolation of single cells or groups of cells and also to obtain sufficient amounts of RNA.Using a new LCM method, we describe here the separate expression profiles of oocytes and follicular cells during the first stages of sheep folliculogenesis.ResultsWe developed a new tissue fixation protocol ensuring efficient single cell capture and RNA integrity during the microdissection procedure. Enrichment in specific cell types was controlled by qRT-PCR analysis of known genes: six oocyte-specific genes (SOHLH2, MAEL, MATER, VASA, GDF9, BMP15) and three granulosa cell-specific genes (KL, GATA4, AMH).A global gene expression profile for each follicular compartment during early developmental stages was identified here for the first time, using a bovine Affymetrix chip. Most notably, the granulosa cell dataset is unique to date. The comparison of oocyte vs. follicular cell transcriptomes revealed 1050 transcripts specific to the granulosa cell and 759 specific to the oocyte.Functional analyses allowed the characterization of the three main cellular events involved in early folliculogenesis and confirmed the relevance and potential of LCM-derived RNA.ConclusionsThe ovary is a complex mixture of different cell types. Distinct cell populations need therefore to be analyzed for a better understanding of their potential interactions. LCM and microarray analysis allowed us to identify novel gene expression patterns in follicular cells at different stages and in oocyte populations.


BMC Genomics | 2013

An overview of gene expression dynamics during early ovarian folliculogenesis: specificity of follicular compartments and bi-directional dialog

Agnès Bonnet; Cédric Cabau; Olivier Bouchez; Julien Sarry; Nathalie Marsaud; Sylvain Foissac; Florent Woloszyn; Philippe Mulsant; Beatrice Mandon-Pepin

BackgroundSuccessful early folliculogenesis is crucial for female reproductive function. It requires appropriate gene specific expression of the different types of ovarian cells at different developmental stages. To date, most gene expression studies on the ovary were conducted in rodents and did not distinguish the type of cell. In mono-ovulating species, few studies have addressed gene expression profiles and mainly concerned human oocytes.ResultsWe used a laser capture microdissection method combined with RNA-seq technology to explore the transcriptome in oocytes and granulosa cells (GCs) during development of the sheep ovarian follicle. We first documented the expression profile of 15 349 genes, then focused on the 5 129 genes showing differential expression between oocytes and GCs. Enriched functional categories such as oocyte meiotic arrest and GC steroid synthesis reflect two distinct cell fates. We identified the implication of GC signal transduction pathways such as SHH, WNT and RHO GTPase. In addition, signaling pathways (VEGF, NOTCH, IGF1, etc.) and GC transzonal projections suggest the existence of complex cell-cell interactions. Finally, we highlighted several transcription regulators and specifically expressed genes that likely play an important role in early folliculogenesis.ConclusionsTo our knowledge, this is the first comprehensive exploration of transcriptomes derived from in vivo oocytes and GCs at key stages in early follicular development in sheep. Collectively, our data advance our understanding of early folliculogenesis in mono-ovulating species and will be a valuable resource for unraveling human ovarian dysfunction such as premature ovarian failure (POF).


PLOS Genetics | 2013

The Highly Prolific Phenotype of Lacaune Sheep Is Associated with an Ectopic Expression of the B4GALNT2 Gene within the Ovary

Laurence Drouilhet; Camille Mansanet; Julien Sarry; Kamila Tabet; Philippe Bardou; Florent Woloszyn; Jérôme Lluch; Grégoire Harichaux; Catherine Viguié; Danielle Monniaux; Loys Bodin; Philippe Mulsant; Stéphane Fabre

Prolific sheep have proven to be a valuable model to identify genes and mutations implicated in female fertility. In the Lacaune sheep breed, large variation in litter size is genetically determined by the segregation of a fecundity major gene influencing ovulation rate, named FecL and its prolific allele FecLL. Our previous work localized FecL on sheep chromosome 11 within a locus of 1.1 Mb encompassing 20 genes. With the aim to identify the FecL gene, we developed a high throughput sequencing strategy of long-range PCR fragments spanning the locus of FecLL carrier and non-carrier ewes. Resulting informative markers defined a new 194.6 kb minimal interval. The reduced FecL locus contained only two genes, insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) and beta-1,4-N-acetyl-galactosaminyl transferase 2 (B4GALNT2), and we identified two SNP in complete linkage disequilibrium with FecLL. B4GALNT2 appeared as the best positional and expressional candidate for FecL, since it showed an ectopic expression in the ovarian follicles of FecLL/FecLL ewes at mRNA and protein levels. In FecLL carrier ewes only, B4GALNT2 transferase activity was localized in granulosa cells and specifically glycosylated proteins were detected in granulosa cell extracts and follicular fluids. The identification of these glycoproteins by mass spectrometry revealed at least 10 proteins, including inhibin alpha and betaA subunits, as potential targets of B4GALNT2 activity. Specific ovarian protein glycosylation by B4GALNT2 is proposed as a new mechanism of ovulation rate regulation in sheep, and could contribute to open new fields of investigation to understand female infertility pathogenesis.


PLOS Genetics | 2015

A Point Mutation in Suppressor of Cytokine Signalling 2 (Socs2) Increases the Susceptibility to Inflammation of the Mammary Gland while Associated with Higher Body Weight and Size and Higher Milk Production in a Sheep Model.

Rachel Rupp; Pavel Senin; Julien Sarry; Charlotte Allain; Christian Tasca; Laeticia Ligat; David Portes; Florent Woloszyn; Olivier Bouchez; Guillaume Tabouret; Mathieu Lebastard; Cécile Caubet; Gilles Foucras; Gwenola Tosser-Klopp

Mastitis is an infectious disease mainly caused by bacteria invading the mammary gland. Genetic control of susceptibility to mastitis has been widely evidenced in dairy ruminants, but the genetic basis and underlying mechanisms are still largely unknown. We describe the discovery, fine mapping and functional characterization of a genetic variant associated with elevated milk leukocytes count, or SCC, as a proxy for mastitis. After implementing genome-wide association studies, we identified a major QTL associated with SCC on ovine chromosome 3. Fine mapping of the region, using full sequencing with 12X coverage in three animals, provided one strong candidate SNP that mapped to the coding sequence of a highly conserved gene, suppressor of cytokine signalling 2 (Socs2). The frequency of the SNP associated with increased SCC was 21.7% and the Socs2 genotype explained 12% of the variance of the trait. The point mutation induces the p.R96C substitution in the SH2 functional domain of SOCS2 i.e. the binding site of the protein to various ligands, as well-established for the growth hormone receptor GHR. Using surface plasmon resonance we showed that the p.R96C point mutation completely abrogates SOCS2 binding affinity for the phosphopeptide of GHR. Additionally, the size, weight and milk production in p.R96C homozygote sheep, were significantly increased by 24%, 18%, and 4.4%, respectively, when compared to wild type sheep, supporting the view that the point mutation causes a loss of SOCS2 functional activity. Altogether these results provide strong evidence for a causal mutation controlling SCC in sheep and highlight the major role of SOCS2 as a tradeoff between the host’s inflammatory response to mammary infections, and body growth and milk production, which are all mediated by the JAK/STAT signaling pathway.


Physiological Genomics | 2017

Differentially expressed genes and gene networks involved in pig ovarian follicular atresia

Elena Terenina; Stéphane Fabre; Agnès Bonnet; Danielle Monniaux; Christèle Robert-Granié; Magali SanCristobal; Julien Sarry; Florence Vignoles; Florence Gondret; Philippe Monget; Gwenola Tosser-Klopp

Ovarian folliculogenesis corresponds to the development of follicles leading to either ovulation or degeneration, this latter process being called atresia. Even if atresia involves apoptosis, its mechanism is not well understood. The objective of this study was to analyze global gene expression in pig granulosa cells of ovarian follicles during atresia. The transcriptome analysis was performed on a 9,216 cDNA microarray to identify gene networks and candidate genes involved in pig ovarian follicular atresia. We found 1,684 significantly regulated genes to be differentially regulated between small healthy follicles and small atretic follicles. Among them, 287 genes had a fold-change higher than two between the two follicle groups. Eleven genes (DKK3, GADD45A, CAMTA2, CCDC80, DAPK2, ECSIT, MSMB, NUPR1, RUNX2, SAMD4A, and ZNF628) having a fold-change higher than five between groups could likely serve as markers of follicular atresia. Moreover, automatic confrontation of deregulated genes with literature data highlighted 93 genes as regulatory candidates of pig granulosa cell atresia. Among these genes known to be inhibitors of apoptosis, stimulators of apoptosis, or tumor suppressors INHBB, HNF4, CLU, different interleukins (IL5, IL24), TNF-associated receptor (TNFR1), and cytochrome-c oxidase (COX) were suggested as playing an important role in porcine atresia. The present study also enlists key upstream regulators in follicle atresia based on our results and on a literature review. The novel gene candidates and gene networks identified in the current study lead to a better understanding of the molecular regulation of ovarian follicular atresia.


Animal Genetics | 2011

Expression levels of 25 genes in liver and testis located in a QTL region for androstenone on SSC7q1.2

Annie Robic; Katia Feve; Catherine Larzul; Yvon Billon; M. Van Son; Laurence Liaubet; Julien Sarry; Denis Milan; E. Grindflek; Jean Pierre Bidanel; Juliette Riquet

A quantitative trait locus (QTL) for boar fat androstenone levels has been identified near the SSC7 centromere in a Large White × Meishan cross. Backcrosses were produced to isolate the Chinese haplotype in a European genetic background. The expression of 25 genes from the QTL region was studied in the testes and livers of 5-month-old backcross boars, with the aim of identifying the causal gene. Using Fluidigm, a new high-throughput technology, the expression of 25 genes was measured in a single real-time PCR experiment. This study found six significantly down-regulated genes (C6ORF106, C6ORF81, CLPS, SLC26A8, SRPK1 and MAPK14) in the testes of MS-LW backcross boars. However, according to current knowledge, none of the genes appear to be related to androstenone metabolism. In the livers, none of the genes were significantly up- or down-regulated, including TEAD3, which was previously designated as a possible candidate to explain this QTL.


Scientific Reports | 2017

A genome scan for milk production traits in dairy goats reveals two new mutations in Dgat1 reducing milk fat content

Pauline Martin; Isabelle Palhiere; Cyrielle Maroteau; Philippe Bardou; Kamila Canale-Tabet; Julien Sarry; Florent Woloszyn; Justine Bertrand-Michel; Ines Racke; Hüseyin Besir; Rachel Rupp; Gwenola Tosser-Klopp

The quantity of milk and milk fat and proteins are particularly important traits in dairy livestock. However, little is known about the regions of the genome that influence these traits in goats. We conducted a genome wide association study in French goats and identified 109 regions associated with dairy traits. For a major region on chromosome 14 closely associated with fat content, the Diacylglycerol O-Acyltransferase 1 (DGAT1) gene turned out to be a functional and positional candidate gene. The caprine reference sequence of this gene was completed and 29 polymorphisms were found in the gene sequence, including two novel exonic mutations: R251L and R396W, leading to substitutions in the protein sequence. The R251L mutation was found in the Saanen breed at a frequency of 3.5% and the R396W mutation both in the Saanen and Alpine breeds at a frequencies of 13% and 7% respectively. The R396W mutation explained 46% of the genetic variance of the trait, and the R251L mutation 6%. Both mutations were associated with a notable decrease in milk fat content. Their causality was then demonstrated by a functional test. These results provide new knowledge on the genetic basis of milk synthesis and will help improve the management of the French dairy goat breeding program.


Molecular Biology and Evolution | 2017

Genome-Wide Identification of the Mutation Underlying Fleece Variation and Discriminating Ancestral Hairy Species from Modern Woolly Sheep

Julie Demars; Margarita Cano; L. Drouilhet; Florence Plisson-Petit; Philippe Bardou; Stéphane Fabre; Bertrand Servin; Julien Sarry; Florent Woloszyn; Philippe Mulsant; Didier Foulquier; Fabien Carrière; Mathias Aletru; Nathalie Rodde; Stéphane Cauet; Olivier Bouchez; Maarten Pirson; Gwenola Tosser-Klopp; Daniel Allain

Abstract The composition and structure of fleece variation observed in mammals is a consequence of a strong selective pressure for fiber production after domestication. In sheep, fleece variation discriminates ancestral species carrying a long and hairy fleece from modern domestic sheep (Ovis aries) owning a short and woolly fleece. Here, we report that the “woolly” allele results from the insertion of an antisense EIF2S2 retrogene (called asEIF2S2) into the 3′ UTR of the IRF2BP2 gene leading to an abnormal IRF2BP2 transcript. We provide evidence that this chimeric IRF2BP2/asEIF2S2 messenger 1) targets the genuine sense EIF2S2 RNA and 2) creates a long endogenous double-stranded RNA which alters the expression of both EIF2S2 and IRF2BP2 mRNA. This represents a unique example of a phenotype arising via a RNA-RNA hybrid, itself generated through a retroposition mechanism. Our results bring new insights on the sheep population history thanks to the identification of the molecular origin of an evolutionary phenotypic variation.

Collaboration


Dive into the Julien Sarry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philippe Mulsant

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Stéphane Fabre

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Philippe Bardou

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Rachel Rupp

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Carole Moreno

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Isabelle Palhiere

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cédric Cabau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Loys Bodin

University of Toulouse

View shared research outputs
Researchain Logo
Decentralizing Knowledge