Gyung Whan Kim
Yonsei University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gyung Whan Kim.
Nature | 2005
Min Hee Choi; In Kyung Lee; Gyung Whan Kim; Bang Ul Kim; Ying-Hao Han; Dae-Yeul Yu; Hye Sun Park; Kyung Yong Kim; Jong Seo Lee; Chulhee Choi; Yun Soo Bae; Byung In Lee; Sue Goo Rhee; Sang Won Kang
Platelet-derived growth factor (PDGF) is a potent mitogenic and migratory factor that regulates the tyrosine phosphorylation of a variety of signalling proteins via intracellular production of H2O2 (refs 1, 2–3). Mammalian 2-Cys peroxiredoxin type II (Prx II; gene symbol Prdx2) is a cellular peroxidase that eliminates endogenous H2O2 produced in response to growth factors such as PDGF and epidermal growth factor; however, its involvement in growth factor signalling is largely unknown. Here we show that Prx II is a negative regulator of PDGF signalling. Prx II deficiency results in increased production of H2O2, enhanced activation of PDGF receptor (PDGFR) and phospholipase Cγ1, and subsequently increased cell proliferation and migration in response to PDGF. These responses are suppressed by expression of wild-type Prx II, but not an inactive mutant. Notably, Prx II is recruited to PDGFR upon PDGF stimulation, and suppresses protein tyrosine phosphatase inactivation. Prx II also leads to the suppression of PDGFR activation in primary culture and a murine restenosis model, including PDGF-dependent neointimal thickening of vascular smooth muscle cells. These results demonstrate a localized role for endogenous H2O2 in PDGF signalling, and indicate a biological function of Prx II in cardiovascular disease.
Neurorx | 2004
Taku Sugawara; Miki Fujimura; Nobuo Noshita; Gyung Whan Kim; Atsushi Saito; Takeshi Hayashi; Purnima Narasimhan; Carolina M. Maier; Pak H. Chan
SummaryCumulative evidence suggests that apoptosis plays a pivotal role in cell deathin vitro after hypoxia. Apoptotic cell death pathways have also been implicated in ischemic cerebral injury inin vivo ischemia models. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides a substrate for numerous enzymatic oxidation reactions. Oxygen radicals damage cellular lipids, proteins and nucleic acids, and initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways may provide novel therapeutic strategies in clinical stroke.
The Journal of Neuroscience | 2003
Gyung Whan Kim; Yvan Gasche; Susanna M. Grzeschik; Jean-Christophe Copin; Carolina M. Maier; Pak H. Chan
Blood-brain barrier (BBB) dysfunction is a potential mechanism involved in progressive striatal damage induced by the mitochondrial excitotoxin, 3-nitropropionic acid (3-NP). After activation by proteases and free radicals, matrix metalloproteinases (MMPs), particularly MMP-9 and -2, can digest the endothelial basal lamina leading to BBB opening. Using CD-1 mice, we show that MMP-9 expression by zymography is increased in the injured striatum compared with the contralateral striatum 2 hr after 3-NP injection [133.50 ± 57.17 vs 50.25 ± 13.56; mean ± SD of optical densities in arbitrary units (A.U.); p < 0.005] and remains elevated until 24 hr (179.33 ± 78.24 A.U.). After 4 hr, MMP-9 expression and activation are accompanied by an increase in BBB permeability. MMP inhibition attenuates BBB disruption, swelling, and lesion volume compared with vehicle-treated controls. There is a clear spatial relationship between MMP-9 expression and oxidized hydroethidine, indicating reactive oxygen species (ROS) production. Furthermore, transgenic mice that overexpress copper/zinc-superoxide dismutase (SOD1) show decreased lesion size and edema along with decreased immunoreactivity for MMP-9, compared with wild-type littermates (lesion: 38.8 ± 15.1 and 53.3 ± 10.3, respectively, p ≤ 0.05; edema: 21.8 ± 11.2 and 35.28 ± 11, respectively, p ≤ 0.05; MMP-9-positive cells: 352 ± 57 and 510 ± 45, respectively, p ≤ 0.005), whereas knock-out mice deficient in SOD1 display significantly greater swelling (48.65 ± 17; p ≤ 0.05). We conclude that early expression and activation of MMP-9 by ROS may be involved in early BBB disruption and progressive striatal damage after 3-NP treatment.
Journal of Cerebral Blood Flow and Metabolism | 2000
Gyung Whan Kim; Jean-Christophe Copin; Makoto Kawase; Sylvia F. Chen; Shuzo Sato; Glenn T. Gobbel; Pak H. Chan
Excitotoxicity is implicated in the pathogenesis of several neurologic diseases, such as chronic neurodegenerative diseases and stroke. Recently, it was reported that excitotoxicity has a relationship to apoptotic neuronal death, and that the mitochondrial toxin, 3-nitropropionic acid (3-NP), could induce apoptosis in the striatum. Although striatal lesions produced by 3-NP could develop through an excitotoxic mechanism, the exact relationship between apoptosis induction and excitotoxicity after 3-NP treatment is still not clear. The authors investigated the role of excitotoxicity and oxidative stress on apoptosis induction within the striatum after intraperitoneal injection of 3-NP. The authors demonstrated that removal of the corticostriatal glutamate pathway reduced superoxide production and apoptosis induction in the denervated striatum of decorticated mice after 3-NP treatment. Also, the N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801, prevented apoptosis in the striatum after 3-NP treatment for 5 days, whereas the non-NMDA receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline, was ineffective. The authors also evaluated the initial type of neuronal death by 3-NP treatment for different durations from 1 to 5 days. In early striatal damage, apoptotic neuronal death initially occurred after 3-NP treatment. Our data show that excitotoxicity related to oxidative stress initially induces apoptotic neuronal death in mouse striatum after treatment with 3-NP.
Stroke | 2000
Kyung Y. Lee; Young H. Sohn; Jong Sam Baik; Gyung Whan Kim; Jin Soo Kim
BACKGROUND AND PURPOSE This study was designed to evaluate cerebral hemodynamic changes related to diabetes mellitus (DM) with transcranial Doppler ultrasonography (TCD). METHODS We measured the flow velocities and the Gosling pulsatility index (PI) of the middle cerebral artery (MCA), extracranial internal carotid artery (ICA), and basilar artery (BA) in 56 stroke-free, normotensive patients with type 2 DM and 70 age- and gender-matched healthy volunteers. Patients were divided into 2 groups according to the presence of microvascular complications such as retinopathy, nephropathy, and neuropathy. RESULTS Patients showed slightly lower hematocrit and higher serum fibrinogen levels than control subjects, but other clinical profiles, including stroke risk factors except for diabetes, were comparable between patients and controls. The flow velocity of the ICA but not the MCA and BA in patients regardless of the complication was significantly higher than that in controls. The PIs of the MCA and ICA were significantly higher in patients with complication than those without complication, as well as in controls. The PI of the BA was also significantly higher, even in patients without complication, than in controls. The PIs of the MCA and ICA but not the BA were closely correlated with the duration of DM (r(2)=0.46 and 0.34, respectively). CONCLUSIONS This study defines TCD findings of diabetes-related cerebral hemodynamic changes and suggests that the PI reflects microangiopathic changes of cerebral vessels.
Current Neurovascular Research | 2009
Kyungsun Choi; Jinho Kim; Gyung Whan Kim; Chulhee Choi
Oxidative stress is deeply involved in various brain diseases, including neurodegenerative diseases, stroke, and ischemia/reperfusion injury. Mitochondria are thought to be the target and source of oxidative stress. We investigated the role of mitochondria in oxidative stress-induced necrotic neuronal cell death in a neuroblastoma cell line and a mouse model of middle cerebral artery occlusion. The exogenous administration of hydrogen peroxide was used to study the role of oxidative stress on neuronal cell survival and mitochondrial function in vitro. Hydrogen peroxide induced non-apoptotic neuronal cell death in a c-Jun N-terminal kinase- and poly(ADP-ribosyl) polymerase-dependent manner. Unexpectedly, hydrogen peroxide treatment induced transient hyperpolarization of the mitochondrial membrane potential and a subsequent delayed burst of endogenous reactive oxygen species (ROS). The inhibition of mitochondrial hyperpolarization by diphenylene iodonium or rotenone, potent inhibitors of mitochondrial respiratory chain complex I, resulted in reduced ROS production and subsequent neuronal cell death in vitro and in vivo. The inhibition of mitochondrial hyperpolarization can protect neuronal cells from oxidative stress-induced necrotic cell death, suggesting a novel method of therapeutic intervention in oxidative stress-induced neurological disease.
Neuroscience | 2001
Gyung Whan Kim; Anders Lewén; Jean-Cristoph Copin; Bd Watson; Pak H. Chan
Oxidative stress has been associated with the development of blood-brain barrier disruption and cellular injury after ischemia. The cytosolic antioxidant, copper/zinc superoxide dismutase, has been shown to protect against blood-brain barrier disruption and infarction after cerebral ischemia-reperfusion. However, it is not clear whether copper/zinc superoxide dismutase can protect against evolving ischemic lesions after thromboembolic cortical ischemia. In this study, the photothrombotic ischemia model, which is physiologically similar to thromboembolic stroke, was used to develop cortical ischemia. Blood-brain barrier disruption and oxidative cellular damage were investigated in transgenic mice that overexpress copper/zinc superoxide dismutase and in littermate wild-type mice after photothrombotic ischemia, which was induced by both injection of erythrosin B (30 mg/kg) and irradiation using a helium neon laser for 3 min. Free radical production, particularly superoxide, was increased in the lesioned cortex as early as 4 h after ischemia using hydroethidine in situ detection. The transgenic mice showed a prominent decrease in oxidative stress compared with the wild-type mice. Blood-brain barrier disruption, evidenced by quantitation of Evans Blue leakage, occurred 1 h after ischemia and gradually increased up to 24 h. Compared with the wild-type mice, the transgenic mice showed less blood-brain barrier disruption, a decrease in oxidative DNA damage using 8-hydroxyguanosine immunohistochemistry, a subsequent decrease in DNA fragmentation using the in situ nick-end labeling technique, and decreased infarct volume after ischemia. From these results we suggest that superoxide anion radical is an important factor in blood-brain barrier disruption and oxidative cellular injury, and that copper/zinc superoxide dismutase could protect against the evolving infarction after thromboembolic cortical ischemia.
Neuroscience Letters | 2005
Byung In Lee; Doo J. Lee; Kyoung Joo Cho; Gyung Whan Kim
We investigated whether the endonuclease G (endoG) translocated from mitochondria to nucleus after transient focal cerebral ischemia (tFCI), thereby contributed to subsequent DNA fragmentation. Adult male mice were subjected to 60min of focal cerebral ischemia by intraluminal suture blockade of the middle cerebral artery. Western blot analysis for endoG was performed at various time points of tFCI. Nuclear endoG was detected as early as 4h after tFCI in the ischemic brain, and correspondingly mitochondrial endoG showed a significant reduction at 4h after reperfusion (p<0.01). Immunohistochemistry of endoG confirmed that the nuclear translocation of endoG was detected as early as 4h after tFCI in the middle cerebral artery (MCA) territory of the ischemic brain. Double immunofluorescent staining with endoG and AIF showed that endoG was predominantly colocalized with AIF at 24h after tFCI. Double staining with endoG immunohistochemistry and TdT-mediated dUTP-biotin nick end labeling showed a spatial relationship between endoG expression and DNA fragmentation at 24h after tFCI. These data suggest that the early nuclear translocation of endoG occurs and could induce DNA fragmentation in the ischemic brain after tFCI.
Neuroscience Letters | 2006
Kyoung Heo; Yang-Je Cho; Kyoung-Joo Cho; Hyunwoo Kim; Hyun-Jung Kim; Ha Young Shin; Byung In Lee; Gyung Whan Kim
Although minocycline has been generally thought to have neuroprotective properties, the neuroprotective role of minocycline has not been investigated in the animal model of epilepsy. In this study, we investigated whether minocycline is neuroprotective against kainic acid (KA)-induced cell death through the caspase-dependent or -independent mitochondrial apoptotic pathways. Adult male ICR mice were subjected to seizures by intrahippocampal KA injection with vehicle or with minocycline. For cell death analysis, TdT-mediated dUTP-biotin nick end labeling and cresyl-violet staining were performed. Western blot analysis and immunofluorescent staining for cytochrome c and apoptosis-inducing factor (AIF) were performed. Cell death was reduced in minocycline-treated mice. Cytosolic translocation of cytochrome c and subsequent activation of caspase-3 were diminished by minocycline treatment. AIF nuclear translocation and subsequent large-scale DNA fragmentation were also reduced in minocycline-treated mice. Thus, this study suggests that minocycline inhibits both caspase-dependent and -independent apoptotic pathways and may be neuroprotective against hippocampal damage after KA treatment.
Journal of Cerebral Blood Flow and Metabolism | 2002
Gyung Whan Kim; Pak H. Chan
Oxidative stress and excitotoxicity have been implicated in selective striatal vulnerability caused by the mitochondrial toxin, 3-nitropropionic acid (3-NP), which may simulate Huntingtons disease in animals and humans. The detailed mechanism of the role of superoxide in striatal vulnerability induced by 3-NP is still unknown. The authors investigated oxidative cellular injury and DNA fragmentation after systemic 3-NP injection in wild-type (Wt) mice and mutant mice with a deficiency in manganese superoxide dismutase (MnSOD; Sod2 −/+). Furthermore, they investigated the effects of decortication after 3-NP treatment in Sod2 −/+ mice, and copper/zinc SOD (CuZnSOD) treatment in recently developed Sod2 −/+ mice that overexpress CuZnSOD (SOD1 +/− / Sod2 −/+ mice). Oxidized hydroethidine, 8-hydroxyguanosine immunoreactivity, and nitrotyrosine immunoreactivity were increased in the Sod2 −/+ mice compared with the Wt mice after 3-NP treatment (P < 0.001). Decortication completely abolished oxidative striatal damage after 3-NP treatment in the Sod2 −/+ mice. Increased CuZnSOD attenuated DNA fragmentation and striatal lesion volume after 3-NP treatment in the Sod2 −/+ mice (P < 0.001). These data suggest that production of superoxide may be a critical step to excitotoxicity and subsequent DNA fragmentation in selective striatal vulnerability after 3-NP treatment.