Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where H. Brent Clark is active.

Publication


Featured researches published by H. Brent Clark.


Cell | 1998

Ataxin-1 Nuclear Localization and Aggregation: Role in Polyglutamine-Induced Disease in SCA1 Transgenic Mice

Ivan A. Klement; Pamela J. Skinner; Michael D. Kaytor; Hong Yi; Steven M. Hersch; H. Brent Clark; Huda Y. Zoghbi; Harry T. Orr

Transgenic mice carrying the spinocerebellar ataxia type 1 (SCA1) gene, a polyglutamine neurodegenerative disorder, develop ataxia with ataxin-1 localized to aggregates within cerebellar Purkinje cells nuclei. To examine the importance of nuclear localization and aggregation in pathogenesis, mice expressing ataxin-1[82] with a mutated NLS were established. These mice did not develop disease, demonstrating that nuclear localization is critical for pathogenesis. In a second series of transgenic mice, ataxin-1[77] containing a deletion within the self-association region was expressed within Purkinje cells nuclei. These mice developed ataxia and Purkinje cell pathology similar to the original SCA1 mice. However, no evidence of nuclear ataxin-1 aggregates was found. Thus, although nuclear localization of ataxin-1 is necessary, nuclear aggregation of ataxin-1 is not required to initiate pathogenesis in transgenic mice.


Cell | 1995

SCA1 transgenic mice: A model for neurodegeneration caused by an expanded CAG trinucleotide repeat

Eric N. Burright; H. Brent Clark; Antonio Servadio; Toni Matilla; Rodney M. Feddersen; Wael S. Yunis; Lisa A. Duvick; Huda Y. Zoghbi; Harry T. Orr

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant inherited disorder characterized by degeneration of cerebellar Purkinje cells, spinocerebellar tracts, and selective brainstem neurons owing to the expansion of an unstable CAG trinucleotide repeat. To gain insight into the pathogenesis of the SCA1 mutation and the intergenerational stability of trinucleotide repeats in mice, we have generated transgenic mice expressing the human SCA1 gene with either a normal or an expanded CAG tract. Both transgenes were stable in parent to offspring transmissions. While all six transgenic lines expressing the unexpanded human SCA1 allele had normal Purkinje cells, transgenic animals from five of six lines with the expanded SCA1 allele developed ataxia and Purkinje cell degeneration. These data indicate that expanded CAG repeats expressed in Purkinje cells are sufficient to produce degeneration and ataxia and demonstrate that a mouse model can be established for neurodegeneration caused by CAG repeat expansions.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Non-ATG-initiated translation directed by microsatellite expansions

Tao Zu; Brian B. Gibbens; Noelle S. Doty; Mário Gomes-Pereira; Aline Huguet; Matthew D. Stone; Jamie M. Margolis; Mark Peterson; Todd W. Markowski; Melissa Ingram; Zhenhong Nan; Colleen L. Forster; Walter C. Low; Benedikt Schoser; Nikunj V. Somia; H. Brent Clark; Stephen C. Schmechel; Peter B. Bitterman; Geneviève Gourdon; Maurice S. Swanson; Melinda L. Moseley; Laura P.W. Ranum

Trinucleotide expansions cause disease by both protein- and RNA-mediated mechanisms. Unexpectedly, we discovered that CAG expansion constructs express homopolymeric polyglutamine, polyalanine, and polyserine proteins in the absence of an ATG start codon. This repeat-associated non-ATG translation (RAN translation) occurs across long, hairpin-forming repeats in transfected cells or when expansion constructs are integrated into the genome in lentiviral-transduced cells and brains. Additionally, we show that RAN translation across human spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1) CAG expansion transcripts results in the accumulation of SCA8 polyalanine and DM1 polyglutamine expansion proteins in previously established SCA8 and DM1 mouse models and human tissue. These results have implications for understanding fundamental mechanisms of gene expression. Moreover, these toxic, unexpected, homopolymeric proteins now should be considered in pathogenic models of microsatellite disorders.


Nature Genetics | 2006

Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8

Melinda L. Moseley; Tao Zu; Yoshio Ikeda; Wangcai Gao; Anne K Mosemiller; Randy S. Daughters; Gang Chen; Marcy R Weatherspoon; H. Brent Clark; Timothy J. Ebner; John W. Day; Laura P.W. Ranum

We previously reported that a (CTG)n expansion causes spinocerebellar ataxia type 8 (SCA8), a slowly progressive ataxia with reduced penetrance. We now report a transgenic mouse model in which the full-length human SCA8 mutation is transcribed using its endogenous promoter. (CTG)116 expansion, but not (CTG)11 control lines, develop a progressive neurological phenotype with in vivo imaging showing reduced cerebellar-cortical inhibition. 1C2-positive intranuclear inclusions in cerebellar Purkinje and brainstem neurons in SCA8 expansion mice and human SCA8 autopsy tissue result from translation of a polyglutamine protein, encoded on a previously unidentified antiparallel transcript (ataxin 8, ATXN8 ) spanning the repeat in the CAG direction. The neurological phenotype in SCA8 BAC expansion but not BAC control lines demonstrates the pathogenicity of the (CTG-CAG)n expansion. Moreover, the expression of noncoding (CUG)n expansion transcripts (ataxin 8 opposite strand, ATXN8OS ) and the discovery of intranuclear polyglutamine inclusions suggests SCA8 pathogenesis involves toxic gain-of-function mechanisms at both the protein and RNA levels.


Stroke | 1996

Inducible Nitric Oxide Synthase Gene Expression in Vascular Cells After Transient Focal Cerebral Ischemia

Costantino Iadecola; Fangyi Zhang; Robyn Casey; H. Brent Clark; M. Elizabeth Ross

BACKGROUND AND PURPOSE We investigated whether inducible nitric oxide synthase (iNOS) is expressed after transient cerebral ischemia and, if so, we sought to define the temporal profile and cellular localization of the expression and the role of iNOS in the mechanism of ischemic brain injury. METHODS The middle cerebral artery in rats was occluded for 2 hours by an intraluminal filament. The occurrence of transient ischemia and reperfusion was confirmed by laser-Doppler flowmetry (n = 5). iNOS message in the ischemic neocortex was determined by reverse-transcription polymerase chain reaction. iNOS enzymatic activity was assessed by citrulline assay. The cellular localization of iNOS expression was determined by immunohistochemistry. RESULTS iNOS mRNA was maximally expressed in postischemic brain at 12 hours and was not present at 4 days (n = 3 per time point). iNOS mRNA was not observed in the contralateral cerebral cortex. iNOS enzymatic activity developed in the postischemic brain between 12 and 24 hours (P < .05) and subsided at 4 days (n = 4 to 8 per time point). iNOS immunoreactivity in the ischemic region was restricted to the wall of capillaries and of larger blood vessels at 12 to 24 hours. In regions of early necrosis, inflammatory cells were iNOS positive. Treatment with the iNOS inhibitor aminoguanidine (n = 5; 100 mg/kg IP, BID for 4 days), starting 6 hours after ischemia, reduced infarct size in neocortex by 36 +/- 7% in comparison with vehicle-treated controls (n = 5) (P < .05). CONCLUSIONS Transient focal ischemia leads to iNOS expression in postischemic brain. However, the spatial and temporal patterns of expression differ from those occurring in permanent ischemia: iNOS is induced earlier and predominantly in vascular cells rather than in neutrophils. Thus, the temporal profile and localization of postischemic iNOS expression depend on the nature of the ischemic insult. The finding that aminoguanidine reduces infarct size adds further support to the hypothesis that postischemic iNOS expression contributes to ischemic brain damage.


Neuron | 2003

Serine 776 of Ataxin-1 Is Critical for Polyglutamine-Induced Disease in SCA1 Transgenic Mice

Effat S. Emamian; Michael D. Kaytor; Lisa A. Duvick; Tao Zu; Susan K. Tousey; Huda Y. Zoghbi; H. Brent Clark; Harry T. Orr

Polyglutamine-induced neurodegeneration in transgenic mice carrying the spinocerebellar ataxia type 1 (SCA1) gene is modulated by subcellular distribution of ataxin-1 and by components of the protein folding/degradation machinery. Since phosphorylation is a prominent mechanism by which these processes are regulated, we examined phosphorylation of ataxin-1 and found that serine 776 (S776) was phosphorylated. Residue 776 appeared to affect cellular deposition of ataxin-1[82Q] in that ataxin-1[82Q]-A776 failed to form nuclear inclusions in tissue culture cells. The importance of S776 for polyglutamine-induced pathogenesis was examined by generating ataxin-1[82Q]-A776 transgenic mice. These mice expressed ataxin-1[82Q]-A776 within Purkinje cell nuclei, yet the ability of ataxin-1[82Q]-A776 to induce disease was substantially reduced. These studies demonstrate that polyglutamine tract expansion and localization of ataxin-1 to the nucleus of Purkinje cells are not sufficient to induce disease. We suggest that S776 of ataxin-1 also has a critical role in SCA1 pathogenesis.


Nature Genetics | 2006

Spectrin Mutations Cause Spinocerebellar Ataxia Type 5

Yoshio Ikeda; Katherine A. Dick; Marcy R Weatherspoon; Dan Gincel; Karen R. Armbrust; Joline Dalton; Giovanni Stevanin; Alexandra Durr; Christine Zühlke; Katrin Bürk; H. Brent Clark; Alexis Brice; Jeffrey D. Rothstein; Lawrence J. Schut; John W. Day; Laura P.W. Ranum

We have discovered that β-III spectrin (SPTBN2) mutations cause spinocerebellar ataxia type 5 (SCA5) in an 11-generation American kindred descended from President Lincolns grandparents and two additional families. Two families have separate in-frame deletions of 39 and 15 bp, and a third family has a mutation in the actin/ARP1 binding region. β-III spectrin is highly expressed in Purkinje cells and has been shown to stabilize the glutamate transporter EAAT4 at the surface of the plasma membrane. We found marked differences in EAAT4 and GluRδ2 by protein blot and cell fractionation in SCA5 autopsy tissue. Cell culture studies demonstrate that wild-type but not mutant β-III spectrin stabilizes EAAT4 at the plasma membrane. Spectrin mutations are a previously unknown cause of ataxia and neurodegenerative disease that affect membrane proteins involved in glutamate signaling.


The Journal of Neuroscience | 1997

Purkinje Cell Expression of a Mutant Allele of SCA1 in Transgenic Mice Leads to Disparate Effects on Motor Behaviors, Followed by a Progressive Cerebellar Dysfunction and Histological Alterations

H. Brent Clark; Eric N. Burright; Wael S. Yunis; Seth Larson; Claire E. Wilcox; Boyd K. Hartman; Antoni Matilla; Huda Y. Zoghbi; Harry T. Orr

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurological disorder caused by the expansion of a CAG repeat encoding a polyglutamine tract. Work presented here describes the behavioral and neuropathological course seen in mutant SCA1 transgenic mice. Behavioral tests indicate that at 5 weeks of age mutant mice have an impaired performance on the rotating rod in the absence of deficits in balance and coordination. In contrast, these mutantSCA1 mice have an increased initial exploratory behavior. Thus, expression of the mutant SCA1 allele within cerebellar Purkinje cells has divergent effects on the motor behavior of juvenile animals: a compromise of rotating rod performance and a simultaneous enhancement of initial exploratory activity. With age, these animals develop incoordination with concomitant progressive Purkinje neuron dendritic and somatic atrophy but relatively little cell loss. Therefore, the eventual development of ataxia caused by the expression of a mutant SCA1 allele is not the result of cell death per se, but the result of cellular dysfunction and morphological alterations that occur before neuronal demise.


The Journal of Neuroscience | 2004

Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice

Tao Zu; Lisa A. Duvick; Michael D. Kaytor; Michael S. Berlinger; Huda Y. Zoghbi; H. Brent Clark; Harry T. Orr

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant, polyglutamine-induced neurodegenerative disorder that results in loss of motor coordination caused primarily by a disruption of cerebellar Purkinje cell function. In this study, we developed a conditional SCA1 mouse model to examine whether stopping expression of mutant ataxin-1 alters the disease phenotype. After cessation of SCA1[82Q] transgene expression, mutant ataxin-1, including that in nuclear inclusions, was cleared rapidly from Purkinje cells. At an early stage of disease, Purkinje cell pathology and motor dysfunction were completely reversible. After halting SCA1 expression at later stages of disease, only a partial recovery was seen. Interestingly, restoration of the ability to perform a complex motor task, the accelerating Rotarod, correlated with localization of mGluR1α to the Purkinje cell-parallel fiber synapse. These results show that the progression of SCA1 pathogenesis is dependent on the continuous expression of mutant ataxin-1. Of note, even at a late stage of disease, Purkinje cells retain at least some ability to repair the damage caused by mutant ataxin-1.


Neuron | 1992

Disrupted cerebellar cortical development and progressive degeneration of Purkinje cells in SV40 T antigen transgenic mice

Rod M. Feddersen; Robert Ehlenfeldt; Wael S. Yunis; H. Brent Clark; Harry T. Orr

SV40 T antigen (Tag) expression directed to cerebellar Purkinje cells resulted in the generation of three transgenic mouse lines that displayed ataxia, a neurological phenotype characteristic of cerebellar dysfunction. Onset of symptoms and cerebellar pathology, characterized by specific Purkinje cell degeneration, appeared to be directly dependent upon transgene copy number. The SV5 line (containing > 30 transgene copies), exhibited embryonic transgene expression that caused selective death of immature Purkinje cells and a subsequent block in cerebellar development and ataxia at 2 weeks. The developmental effect of the disruption of Purkinje cells in SV5 mice suggests that a normal complement of these cells is required for early development of the cerebellar cortex, especially granule cell proliferation and migration from external to internal layers. Transgene expression in a second line, SV4 (10 copies), was detectable during the second postnatal week. Death of mature Purkinje cells in the SV4 line resulted in onset of ataxia at 9 weeks. Ataxia in a third line, SV6 (2 copies), was detected after 15 weeks. The distinct cerebellar phenotypes of the SV4-6 lines correlate with specific Tag-induced Purkinje cell ablation as opposed to tumorigenesis.

Collaboration


Dive into the H. Brent Clark's collaboration.

Top Co-Authors

Avatar

Harry T. Orr

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Huda Y. Zoghbi

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Zu

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Walter A. Hall

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Gülin Öz

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tetsuo Ashizawa

Houston Methodist Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge