Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hagen Blankenburg is active.

Publication


Featured researches published by Hagen Blankenburg.


Cell Host & Microbe | 2011

Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment

Simon Reiss; Ilka Rebhan; Perdita Backes; Inés Romero-Brey; Holger Erfle; Petr Matula; Lars Kaderali; Marion Poenisch; Hagen Blankenburg; Marie Sophie Hiet; T Longerich; Sarah Diehl; Fidel Ramírez; Tamas Balla; Karl Rohr; Artur Kaul; Sandra Bühler; Rainer Pepperkok; Thomas Lengauer; Mario Albrecht; Roland Eils; Peter Schirmacher; Volker Lohmann; Ralf Bartenschlager

Hepatitis C virus (HCV) is a major causative agent of chronic liver disease in humans. To gain insight into host factor requirements for HCV replication, we performed a siRNA screen of the human kinome and identified 13 different kinases, including phosphatidylinositol-4 kinase III alpha (PI4KIIIα), as being required for HCV replication. Consistent with elevated levels of the PI4KIIIα product phosphatidylinositol-4-phosphate (PI4P) detected in HCV-infected cultured hepatocytes and liver tissue from chronic hepatitis C patients, the enzymatic activity of PI4KIIIα was critical for HCV replication. Viral nonstructural protein 5A (NS5A) was found to interact with PI4KIIIα and stimulate its kinase activity. The absence of PI4KIIIα activity induced a dramatic change in the ultrastructural morphology of the membranous HCV replication complex. Our analysis suggests that the direct activation of a lipid kinase by HCV NS5A contributes critically to the integrity of the membranous viral replication complex.


Nature Methods | 2011

PSICQUIC and PSISCORE: accessing and scoring molecular interactions

Bruno Aranda; Hagen Blankenburg; Samuel Kerrien; Fiona S. L. Brinkman; Arnaud Ceol; Emilie Chautard; Jose M. Dana; Javier De Las Rivas; Marine Dumousseau; Eugenia Galeota; Anna Gaulton; Johannes Goll; Robert E. W. Hancock; Ruth Isserlin; Rafael C. Jimenez; Jules Kerssemakers; Jyoti Khadake; David J. Lynn; Magali Michaut; Gavin O'Kelly; Keiichiro Ono; Sandra Orchard; Carlos Tejero Prieto; Sabry Razick; Olga Rigina; Lukasz Salwinski; Milan Simonovic; Sameer Velankar; Andrew Winter; Guanming Wu

To study proteins in the context of a cellular system, it is essential that the molecules with which a protein interacts are identified and the functional consequence of each interaction is understood. A plethora of resources now exist to capture molecular interaction data from the many laboratories generating…


Proceedings of the National Academy of Sciences of the United States of America | 2007

The implications of alternative splicing in the ENCODE protein complement.

Michael L. Tress; Pier Luigi Martelli; Adam Frankish; Gabrielle A. Reeves; Jan Jaap Wesselink; Corin Yeats; Páll ĺsólfur Ólason; Mario Albrecht; Hedi Hegyi; Alejandro Giorgetti; Domenico Raimondo; Julien Lagarde; Roman A. Laskowski; Gonzalo López; Michael I. Sadowski; James D. Watson; Piero Fariselli; Ivan Rossi; Alinda Nagy; Wang Kai; Zenia M Størling; Massimiliano Orsini; Yassen Assenov; Hagen Blankenburg; Carola Huthmacher; Fidel Ramírez; Andreas Schlicker; P. D. Jones; Samuel Kerrien; Sandra Orchard

Alternative premessenger RNA splicing enables genes to generate more than one gene product. Splicing events that occur within protein coding regions have the potential to alter the biological function of the expressed protein and even to create new protein functions. Alternative splicing has been suggested as one explanation for the discrepancy between the number of human genes and functional complexity. Here, we carry out a detailed study of the alternatively spliced gene products annotated in the ENCODE pilot project. We find that alternative splicing in human genes is more frequent than has commonly been suggested, and we demonstrate that many of the potential alternative gene products will have markedly different structure and function from their constitutively spliced counterparts. For the vast majority of these alternative isoforms, little evidence exists to suggest they have a role as functional proteins, and it seems unlikely that the spectrum of conventional enzymatic or structural functions can be substantially extended through alternative splicing.


BMC Bioinformatics | 2008

Integrating biological data – the Distributed Annotation System

Andrew M. Jenkinson; Mario Albrecht; Ewan Birney; Hagen Blankenburg; Thomas A. Down; Robert D. Finn; Henning Hermjakob; Tim Hubbard; Rafael C. Jimenez; Philip Jones; Andreas Kähäri; Eugene Kulesha; José R. Macías; Gabrielle A. Reeves; Andreas Prlić

BackgroundThe Distributed Annotation System (DAS) is a widely adopted protocol for dynamically integrating a wide range of biological data from geographically diverse sources. DAS continues to expand its applicability and evolve in response to new challenges facing integrative bioinformatics.ResultsHere we describe the various infrastructure components of DAS and present a new extended version of the DAS specification. Version 1.53E incorporates several recent developments, including its extension to serve new data types and an ontology for protein features.ConclusionOur extensions to the DAS protocol have facilitated the integration of new data types, and our improvements to the existing DAS infrastructure have addressed recent challenges. The steadily increasing numbers of available data sources demonstrates further adoption of the DAS protocol.


Science Signaling | 2012

Specificity of Linear Motifs that Bind to a Common Mitogen-activated Protein Kinase Docking Groove

Ágnes Garai; András Zeke; Gergö Gógl; Imre Töro; Ferenc Fördos; Hagen Blankenburg; Tünde Bárkai; János Varga; Anita Alexa; Dorothea Emig; Mario Albrecht; Attila Reményi

Three related kinases use distinct structural features to discriminate between linear docking motifs in potential binding partners. Docking with the Right Partner The mitogen-activated protein kinases (MAPKs) participate in diverse biological processes, such as inflammation and cellular proliferation, and can be divided into the c-Jun N-terminal kinase (JNK), p38, and extracellular signal–regulated kinase (ERK) families. Potential binding partners have short linear “docking” motifs (7 to 17 amino acids) with a loosely defined consensus sequence, and these motifs associate with docking grooves in MAPKs. The docking grooves in the different MAPK families are quite similar in sequence. Garai et al. uncovered the structural features of the docking motifs that enable MAPKs to discriminate between potential binding partners. They used this information to manipulate the specificity of peptides corresponding to docking motifs found in MAPK binding partners—for example, a JNK1-specific peptide was altered so that it also bound to p38α and ERK2. Furthermore, they designed artificial peptides with engineered specificities to a particular MAPK or set of MAPKs. These results provide insight into how MAPKs differentiate between seemingly similar binding partners and could be used to disrupt a specific MAPK binding partner interaction in a targeted fashion. Mitogen-activated protein kinases (MAPKs) have a docking groove that interacts with linear “docking” motifs in binding partners. To determine the structural basis of binding specificity between MAPKs and docking motifs, we quantitatively analyzed the ability of 15 docking motifs from diverse MAPK partners to bind to c-Jun amino-terminal kinase 1 (JNK1), p38α, and extracellular signal–regulated kinase 2 (ERK2). Classical docking motifs mediated highly specific binding only to JNK1, and only those motifs with a sequence pattern distinct from the classical MAPK binding docking motif consensus differentiated between the topographically similar docking grooves of ERK and p38α. Crystal structures of four complexes of MAPKs with docking peptides, representing JNK-specific, ERK-specific, or ERK- and p38-selective binding modes, revealed that the regions located between consensus positions in the docking motifs showed conformational diversity. Although the consensus positions in the docking motifs served as anchor points that bound to common MAPK surface features and mostly contributed to docking in a nondiscriminatory fashion, the conformation of the intervening region between the anchor points mostly determined specificity. We designed peptides with tailored MAPK binding profiles by rationally changing the length and amino acid composition of intervening regions located between anchor points. These results suggest a coherent structural model for MAPK docking specificity that reveals how short linear motifs binding to a common kinase docking groove can mediate diverse interaction patterns and contribute to correct MAPK partner selection in signaling networks.


Neurology | 2015

Overexpression of blood microRNAs 103a, 30b, and 29a in l-dopa–treated patients with PD

Alice Serafin; Luisa Foco; Stefano Zanigni; Hagen Blankenburg; Anne Picard; Alessandra Zanon; Giulia Giannini; Irene Pichler; Maurizio F. Facheris; Pietro Cortelli; Peter P. Pramstaller; Andrew A. Hicks; Francisco S. Domingues; Christine Schwienbacher

Objective: The aims of the present study were to profile the expression of several candidate microRNAs (miRNAs) in blood from l-dopa-treated and drug-naive patients with Parkinson disease (PD) vs unaffected controls and to interpret the miRNA expression data in a biological context. Methods: We analyzed RNAs from peripheral blood of 36 l-dopa–treated, 10 drug-naive patients with PD and unaffected controls matched 1:1 by sex and age. We evaluated expression by reverse transcription–quantitative real-time PCR, and we analyzed data using a 2-tailed paired t test. To detect miRNA targets, several miRNA resources were combined to generate an overall score for each candidate gene using weighted rank aggregation. Results: Significant overexpression of miR-103a-3p (p < 0.0001), miR-30b-5p (p = 0.002), and miR-29a-3p (p = 0.005) in treated patients with PD was observed, and promising candidate target genes for these were revealed by an integrated in silico analysis. Conclusions: We revealed 3 candidate biomarkers for PD. miRNAs 30b-5p and 29a-3p replicated a documented deregulation in PD albeit opposite to published data, while for miR-103a-3p, we demonstrated for the first time an overexpression in treated patients with PD. Expression studies in patients and/or in isolated peripheral blood mononuclear cells before and after l-dopa administration are necessary to define the involvement of l-dopa treatment in the observed overexpression. Our in silico analysis to prioritize targets of deregulated miRNAs identified candidate target genes, including genes related to neurodegeneration and PD. Despite the preliminary character of our study, the results provide a rationale for further clarifying the role of the identified miRNAs in the pathogenesis of PD and for validating their diagnostic potential.


PLOS ONE | 2013

Profiling of Parkin-Binding Partners Using Tandem Affinity Purification

Alessandra Zanon; Aleksandar Rakovic; Hagen Blankenburg; Nadezhda Tsankova Doncheva; Christine Schwienbacher; Alice Serafin; Adrian Alexa; Christian X. Weichenberger; Mario Albrecht; Christine Klein; Andrew A. Hicks; Peter P. Pramstaller; Francisco S. Domingues; Irene Pichler

Parkinsons disease (PD) is a progressive neurodegenerative disorder affecting approximately 1–2% of the general population over age 60. It is characterized by a rather selective loss of dopaminergic neurons in the substantia nigra and the presence of α-synuclein-enriched Lewy body inclusions. Mutations in the Parkin gene (PARK2) are the major cause of autosomal recessive early-onset parkinsonism. The Parkin protein is an E3 ubiquitin ligase with various cellular functions, including the induction of mitophagy upon mitochondrial depolarizaton, but the full repertoire of Parkin-binding proteins remains poorly defined. Here we employed tandem affinity purification interaction screens with subsequent mass spectrometry to profile binding partners of Parkin. Using this approach for two different cell types (HEK293T and SH-SY5Y neuronal cells), we identified a total of 203 candidate Parkin-binding proteins. For the candidate proteins and the proteins known to cause heritable forms of parkinsonism, protein-protein interaction data were derived from public databases, and the associated biological processes and pathways were analyzed and compared. Functional similarity between the candidates and the proteins involved in monogenic parkinsonism was investigated, and additional confirmatory evidence was obtained using published genetic interaction data from Drosophila melanogaster. Based on the results of the different analyses, a prioritization score was assigned to each candidate Parkin-binding protein. Two of the top ranking candidates were tested by co-immunoprecipitation, and interaction to Parkin was confirmed for one of them. New candidates for involvement in cell death processes, protein folding, the fission/fusion machinery, and the mitophagy pathway were identified, which provide a resource for further elucidating Parkin function.


PLOS Pathogens | 2015

Identification of HNRNPK as Regulator of Hepatitis C Virus Particle Production

Marion Poenisch; Philippe Metz; Hagen Blankenburg; Alessia Ruggieri; Ji-Young Lee; Daniel Rupp; Ilka Rebhan; Kathrin Diederich; Lars Kaderali; Francisco S. Domingues; Mario Albrecht; Volker Lohmann; Holger Erfle; Ralf Bartenschlager; Glenn Randall

Hepatitis C virus (HCV) is a major cause of chronic liver disease affecting around 130 million people worldwide. While great progress has been made to define the principle steps of the viral life cycle, detailed knowledge how HCV interacts with its host cells is still limited. To overcome this limitation we conducted a comprehensive whole-virus RNA interference-based screen and identified 40 host dependency and 16 host restriction factors involved in HCV entry/replication or assembly/release. Of these factors, heterogeneous nuclear ribonucleoprotein K (HNRNPK) was found to suppress HCV particle production without affecting viral RNA replication. This suppression of virus production was specific to HCV, independent from assembly competence and genotype, and not found with the related Dengue virus. By using a knock-down rescue approach we identified the domains within HNRNPK required for suppression of HCV particle production. Importantly, HNRNPK was found to interact specifically with HCV RNA and this interaction was impaired by mutations that also reduced the ability to suppress HCV particle production. Finally, we found that in HCV-infected cells, subcellular distribution of HNRNPK was altered; the protein was recruited to sites in close proximity of lipid droplets and colocalized with core protein as well as HCV plus-strand RNA, which was not the case with HNRNPK variants unable to suppress HCV virion formation. These results suggest that HNRNPK might determine efficiency of HCV particle production by limiting the availability of viral RNA for incorporation into virions. This study adds a new function to HNRNPK that acts as central hub in the replication cycle of multiple other viruses.


Bioinformatics | 2009

DASMI: Exchanging, Annotating and Assessing Molecular Interaction Data

Hagen Blankenburg; Robert D. Finn; Andreas Prlić; Andrew M. Jenkinson; Fidel Ramírez; Dorothea Emig; Sven-Eric Schelhorn; Joachim Büch; Thomas Lengauer; Mario Albrecht

Motivation: Ever increasing amounts of biological interaction data are being accumulated worldwide, but they are currently not readily accessible to the biologist at a single site. New techniques are required for retrieving, sharing and presenting data spread over the Internet. Results: We introduce the DASMI system for the dynamic exchange, annotation and assessment of molecular interaction data. DASMI is based on the widely used Distributed Annotation System (DAS) and consists of a data exchange specification, web servers for providing the interaction data and clients for data integration and visualization. The decentralized architecture of DASMI affords the online retrieval of the most recent data from distributed sources and databases. DASMI can also be extended easily by adding new data sources and clients. We describe all DASMI components and demonstrate their use for protein and domain interactions. Availability: The DASMI tools are available at http://www.dasmi.de/ and http://ipfam.sanger.ac.uk/graph. The DAS registry and the DAS 1.53E specification is found at http://www.dasregistry.org/. Contact: [email protected] Supplementary information: Supplementary data and all figures in color are available at Bioinformatics online.


BMC Research Notes | 2014

Identification of a set of endogenous reference genes for miRNA expression studies in Parkinson’s disease blood samples

Alice Serafin; Luisa Foco; Hagen Blankenburg; Anne Picard; Stefano Zanigni; Alessandra Zanon; Peter P. Pramstaller; Andrew A. Hicks; Christine Schwienbacher

BackgroundResearch on microRNAs (miRNAs) is becoming an increasingly attractive field, as these small RNA molecules are involved in several physiological functions and diseases. To date, only few studies have assessed the expression of blood miRNAs related to Parkinson’s disease (PD) using microarray and quantitative real-time PCR (qRT-PCR). Measuring miRNA expression involves normalization of qRT-PCR data using endogenous reference genes for calibration, but their choice remains a delicate problem with serious impact on the resulting expression levels. The aim of the present study was to evaluate the suitability of a set of commonly used small RNAs as normalizers and to identify which of these miRNAs might be considered reliable reference genes in qRT-PCR expression analyses on PD blood samples.ResultsCommonly used reference genes snoRNA RNU24, snRNA RNU6B, snoRNA Z30 and miR-103a-3p were selected from the literature. We then analyzed the effect of using these genes as reference, alone or in any possible combination, on the measured expression levels of the target genes miR-30b-5p and miR-29a-3p, which have been previously reported to be deregulated in PD blood samples.ConclusionsWe identified RNU24 and Z30 as a reliable and stable pair of reference genes in PD blood samples.

Collaboration


Dive into the Hagen Blankenburg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge