Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haichen Nie is active.

Publication


Featured researches published by Haichen Nie.


Molecular Pharmaceutics | 2015

Investigation of Drug–Excipient Interactions in Lapatinib Amorphous Solid Dispersions Using Solid-State NMR Spectroscopy

Yang Song; Xinghao Yang; Xin Chen; Haichen Nie; Stephen R. Byrn; Joseph W. Lubach

This study investigated the presence of specific drug-excipient interactions in amorphous solid dispersions of lapatinib (LB) and four commonly used pharmaceutical polymers, including Soluplus, polyvinylpyrrolidone vinyl acetate (PVPVA), hydroxypropylmethylcellulose acetate succinate (HPMCAS), and hydroxypropylmethylcellulose phthalate (HPMCP). Based on predicted pKa differences, LB was hypothesized to exhibit a specific ionic interaction with HPMCP, and possibly with HPMCAS, while Soluplus and PVPVA were studied as controls without ionizable functionality. Thermal studies showed a single glass transition (Tg) for each dispersion, in close agreement with predicted values for Soluplus, PVPVA, and HPMCAS systems. However, the Tg values of LB-HPMCP solid dispersions were markedly higher than predicted values, indicating a strong intermolecular interaction between LB and HPMCP. (15)N solid-state NMR provided direct spectroscopic evidence for protonation of LB (i.e., salt formation) within the HPMCP solid dispersions. (1)H T1 and (1)H T1ρ relaxation studies of the dispersions supported the ionic interaction hypothesis, and indicated multiple phases in the cases of excess drug or polymer. In addition, the dissolution and stability behavior of each system was examined. Both acidic polymers, HPMCAS and HPMCP, effectively inhibited the crystallization of LB on accelerated stability, likely owing to beneficial strong intermolecular hydrogen and/or specific ionic bonds with the acidic polymers. Soluplus and PVPVA showed poor physical properties on stability and subsequently poor crystallization inhibition.


Molecular Pharmaceutics | 2015

Investigating the Interaction Pattern and Structural Elements of a Drug–Polymer Complex at the Molecular Level

Haichen Nie; Huaping Mo; Mingtao Zhang; Yang Song; Ke Fang; Lynne S. Taylor; Tonglei Li; Stephen R. Byrn

Strong associations between drug and polymeric carriers are expected to contribute to higher drug loading capacities and better physical stability of amorphous solid dispersions. However, molecular details of the interaction patterns and underlying mechanisms are still unclear. In the present study, a series of amorphous solid dispersions of clofazimine (CLF), an antileprosy drug, were prepared with different polymers by applying the solvent evaporation method. When using hypromellose phthalate (HPMCP) as the carrier, the amorphous solid dispersion system exhibits not only superior drug loading capacity (63% w/w) but also color change due to strong drug-polymer association. In order to further explain these experimental observations, the interaction between CLF and HPMCP was investigated in a nonpolar volatile solvent system (chloroform) prior to forming the solid dispersion. We observed significant UV/vis and (1)H NMR spectral changes suggesting the protonation of CLF and formation of ion pairs between CLF and HPMCP in chloroform. Furthermore, nuclear Overhauser effect spectroscopy (NOESY) and diffusion order spectroscopy (DOSY) were employed to evaluate the strength of associations between drug and polymers, as well as the molecular mobility of CLF. Finally, by correlating the experimental values with quantum chemistry calculations, we demonstrate that the protonated CLF is binding to the carboxylate group of HPMCP as an ion pair and propose a possible structural model of the drug-polymer complex. Understanding the drug and carrier interaction patterns from a molecular perspective is critical for the rational design of new amorphous solid dispersions.


Molecular Pharmaceutics | 2016

Acid–Base Interactions of Polystyrene Sulfonic Acid in Amorphous Solid Dispersions Using a Combined UV/FTIR/XPS/ssNMR Study

Yang Song; Dmitry Zemlyanov; Xin Chen; Haichen Nie; Ziyang Su; Ke Fang; Xinghao Yang; Daniel W. Smith; Stephen R. Byrn; Joseph W. Lubach

This study investigates the potential drug-excipient interactions of polystyrene sulfonic acid (PSSA) and two weakly basic anticancer drugs, lapatinib (LB) and gefitinib (GB), in amorphous solid dispersions. Based on the strong acidity of the sulfonic acid functional group, PSSA was hypothesized to exhibit specific intermolecular acid-base interactions with both model basic drugs. Ultraviolet (UV) spectroscopy identified red shifts, which correlated well with the color change observed in lapatinib-PSSA solutions. Fourier transform infrared (FTIR) spectra suggest the protonation of the quinazoline nitrogen atom in both model compounds, which agrees well with data from the crystalline ditosylate salt of lapatinib. X-ray photoelectron spectroscopy (XPS) detected increases in binding energy of the basic nitrogen atoms in both lapatinib and gefitinib, strongly indicating protonation of these nitrogen atoms. (15)N solid-state NMR spectroscopy provided direct spectroscopic evidence for protonation of the quinazoline nitrogen atoms in both LB and GB, as well as the secondary amine nitrogen atom in LB and the tertiary amine nitrogen atom in GB. The observed chemical shifts in the LB-PSSA (15)N spectrum also agree very well with the lapatinib ditosylate salt where proton transfer is known. Additionally, the dissolution and physical stability behaviors of both amorphous solid dispersions were examined. PSSA was found to significantly improve the dissolution of LB and GB and effectively inhibit the crystallization of LB and GB under accelerated storage conditions due to the beneficial strong intermolecular acid-base interaction between the sulfonic acid groups and basic nitrogen centers.


Journal of Pharmaceutical and Biomedical Analysis | 2016

Analytical approaches to investigate salt disproportionation in tablet matrices by Raman spectroscopy and Raman mapping.

Haichen Nie; Zhen Liu; Brian Marks; Lynne S. Taylor; Stephen R. Byrn; Patrick J. Marsac

It has always been challenging to use spectroscopic methods to analyze salt disproportionation in a multi-component tablet matrix due to the spectral interference generated by the various excipients. Although combining Raman spectroscopy and chemometrics can be a powerful approach to study the extent of salt disproportionation, it was found in the present study that bulk measurements and chemometric modeling have obvious limitations when the targeted component is present at low levels in the tablet. Hence, a two-step Raman mapping approach was developed herein to investigate salt disproportionation in tablets with a low drug loading (5% w/w). The first step is to locate the area of interest where the drug particles reside throughout the tablet surface by using a statistically optimized sampling method termed deliberate sub-sampling. The second step, referred to herein as close-step mapping, utilize a step by step mapping of the targeted area to find more details of salt disproportionation in the tablet regions where the drug is concentrated. By using this two-step Raman mapping approach, we successfully detected the existence of minor species embedded in multi-component low drug loading tablet matrices, where bulk measurements from routine techniques usually lack of sensitivity. This approach will help formulation scientists detect and understand salt disproportionation and in situ drug-excipients compatibility issues in low dose solid dosage formulations.


Drug Development and Industrial Pharmacy | 2017

Stability of pharmaceutical salts in solid oral dosage forms

Haichen Nie; Stephen R. Byrn; Qi (Tony) Zhou

Abstract Using pharmaceutical salts in solid dosage forms can raise stability concerns, especially salt dissociation which can adversely affect the product performance. Therefore, a thorough understanding of the salt instability encountered in solid-state formulations is imperative to ensure the product quality. The present article uses the fundamental theory of acid base, ionic equilibrium, relationship of pH and solubility as a starting point to illustrate and interpret the salt formation and salt disproportionation in pharmaceutical systems. The criteria of selecting the optimal salt form and the underlying theory of salt formation and disproportionation are reviewed in detail. Factors influencing salt stability in solid dosage forms are scrutinized and discussed with the case studies. In addition, both commonly used and innovative strategies for preventing salt dissociations in formulation, on storage and during manufacturing will be suggested herein. This article will provide formulation scientists and manufacturing engineers an insight into the mechanisms of salt disproportionation and salt formation, which can help them to avoid and solve the instability issues of pharmaceutical salts in the product design.


International Journal of Pharmaceutics | 2016

Acid-base interactions in amorphous solid dispersions of lumefantrine prepared by spray-drying and hot-melt extrusion using X-ray photoelectron spectroscopy.

Yang Song; Dmitry Zemlyanov; Xin Chen; Ziyang Su; Haichen Nie; Joseph W. Lubach; Daniel W. Smith; Stephen R. Byrn; Rodolfo Pinal

This study investigates drug-excipient interactions in amorphous solid dispersions (ASDs) of the model basic compound lumefantrine (LMN), with five acidic polymers. X-ray photoelectron spectroscopy (XPS) was used to measure the extent of the protonation of the tertiary amine in LMN by the five acidic polymers. The extent/efficiency of protonation of the ASDs was assessed a function of polymer type, manufacturing process (hot-melt extrusion vs. spray drying), and drug loading (DL). The most strongly acidic polymer, polystyrene sulfonic acid (PSSA) was found to be the most efficient polymer in protonating LMN, independently of manufacturing method and DL. The rank order for the protonation extent of LMN by each polymer is roughtly the same for both manufacturing processes. However, protonation efficiency of polymers of similar acidic strength ranged from ∼0% to 75% (HPMCAS and Eudragit L100-55, respectively), suggesting an important role of molecular/mixing effects. For some polymers, including Eudragit L100 55 and HPMCP, spray-drying resulted in higher protonation efficiency compared to hot-melt extrusion. This result is attributable to a more favorable encounter between acid and base groups, when exposed to each other in solution phase. Increasing DL led to decreased protonation efficiency in most cases, particularly for polyacrylic acid, despite having the highest content of acidic groups per unit mass. These results indicate that the combined effects of acid strength and mixing phenomena regulate the efficiency of acid-base interactions in the ASDs.


Pharmaceutical Research | 2018

Effects of Moisture-Induced Crystallization on the Aerosol Performance of Spray Dried Amorphous Ciprofloxacin Powder Formulations

Nivedita Shetty; Lingfei Zeng; Sharad Mangal; Haichen Nie; Matthew R. Rowles; Rui Guo; Youngwoo Han; Joon Hyeong Park; Qi (Tony) Zhou

ABSTRACTPurposeThis study aims to investigate the influence of different storage humidity conditions on crystallization and aerosol performance of inhalable spray dried amorphous powder formulations (Ciprofloxacin hydrochloride as the model drug).MethodsThe spray dried samples were stored at 20%, 55% and 75% relative humidity (RH). Crystallinity was monitored by Powder X-ray diffraction (PXRD), and particle morphology was measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Aerosol performance was evaluated using a multi-stage liquid impinger (MSLI).ResultsPXRD diffractograms showed the spray dried Ciprofloxacin stored at 20% RH for three weeks were amorphous; whereas those stored at 55% RH and 75% RH started crystallizing after one hour. Fine particle fraction (FPF) of the particles was improved from 28% to 42% after storage at 55% RH for three days. Such improvement was attributed to the crystallization of amorphous powders, which led to increased particle roughness and reduced particulate contact area, as visualized by SEM and quantified by AFM. A linear relationship was observed between degree of crystallinity/crystallite size and FPF (R2 = 0.94 and R2 = 0.96, respectively). However, deterioration in aerosol performance was observed after storage at 75% RH due to formation of inter-particulate liquid/solid bridges, as confirmed by SEM.ConclusionsThis study provides a fundamental understanding in moisture-induced physical and aerosol instability of the spray dried powder formulations.


International Journal of Pharmaceutics | 2017

Crystalline solid dispersion-a strategy to slowdown salt disproportionation in solid state formulations during storage and wet granulation

Haichen Nie; Wei Xu; Lynne S. Taylor; Patrick J. Marsac; Stephen R. Byrn

Salt disproportionation (a conversion from the ionized to the neutral state) in solid formulations is a potential concern during manufacturing or storage of products containing a salt of the active pharmaceutical ingredient (API) due to the negative ramifications on product performance. However, it is challenging to find an effective approach to prevent or mitigate this undesirable reaction in formulations. Hence, the overall objective of this study is to explore novel formulation strategies to reduce the risk of salt disproportionation in pharmaceutical products. Crystals of pioglitazone hydrochloride salt were dispersed into polymeric matrices as a means of preventing the pharmaceutical salt from direct contact with problematic excipients. It was found that the level of salt disproportionation could be successfully reduced during storage or wet granulation by embedding a crystalline salt into a polymeric carrier. Furthermore, the impact of different polymers on the disproportionation process of a salt of a weakly basic API was investigated herein. Disproportionation of pioglitazone hydrochloride salt was found to be significantly affected by the physicochemical properties of different polymers including hygroscopicity and acidity of substituents. These findings provide an improved understanding of the role of polymeric carriers on the stability of a salt in solid formulations. Moreover, we also found that introducing acidifiers into granulation fluid can bring additional benefits to retard the disproportionation of pioglitazone HCl during the wet granulation process. These interesting discoveries offer new approaches to mitigate disproportionation of API salt during storage or processing, which allow pharmaceutical scientists to develop appropriate formulations with improved drug stability.


Pharmaceutical Research | 2018

Physico-Chemical Properties, Aerosolization and Dissolution of Co-Spray Dried Azithromycin Particles with L-Leucine for Inhalation

Sharad Mangal; Haichen Nie; Rongkun Xu; Rui Guo; Alex Cavallaro; Dmitry Zemlyanov; Qi (Tony) Zhou

PurposeInhalation therapy is popular to treat lower respiratory tract infections. Azithromycin is effective against some bacteria that cause respiratory tract infections; but it has poor water solubility that may limit its efficacy when administrated as inhalation therapy. In this study, dry powder inhaler formulations were developed by co-spray drying azithromycin with L-leucine with a purpose to improve dissolution.MethodsThe produced powder formulations were characterized regarding particle size, morphology, surface composition and in-vitro aerosolization performance. Effects of L-leucine on the solubility and in-vitro dissolution of azithromycin were also evaluated.ResultsThe spray dried azithromycin alone formulation exhibited a satisfactory aerosol performance with a fine particle fraction (FPF) of 62.5 ± 4.1%. Addition of L-leucine in the formulation resulted in no significant change in particle morphology and FPF, which can be attributed to enrichment of azithromycin on the surfaces of composite particles. Importantly, compared with the spray-dried amorphous azithromycin alone powder, the co-spray dried powder formulations of azithromycin and L-leucine demonstrated a substantially enhanced in-vitro dissolution rate. Such enhanced dissolution of azithromycin could be attributed to the formation of composite system and the acidic microenvironment around azithromycin molecules created by the dissolution of acidic L-leucine in the co-spray dried powder. Fourier transform infrared spectroscopic data showed intermolecular interactions between azithromycin and L-leucine in the co-spray dried formulations.ConclusionsWe developed the dry powder formulations with satisfactory aerosol performance and enhanced dissolution for a poorly water soluble weak base, azithromycin, by co-spray drying with an amino acid, L-leucine.


Aaps Pharmscitech | 2018

Investigating the Physicochemical Stability of Highly Purified Darunavir Ethanolate Extracted from PREZISTA® Tablets

Haichen Nie; Huaping Mo; Stephen R. Byrn

Understanding physicochemical stability of darunavir ethanolate is expected to be of critical importance for the development and manufacturing of high-quality darunavir-related pharmaceutical products. However, there are no enabling monographs for darunavir to illustrate its solid-state chemistry, impurity profile, and assay methods. In addition, the US Pharmacopeia reference standard of darunavir is still not commercially available. It has been also challenging to find reliable vendors to obtain highly purified darunavir ethanolate crystals to conduct the physicochemical stability testing. In the present research, we developed a straightforward and cost-effective approach to extract and purify darunavir ethanolate from PREZISTA® tablets using reverse-engineering and crystallization. Using these highly purified crystals, we thoroughly evaluated the potential risks of degradation and form conversions of darunavir ethanolate at stressed conditions to define the manufacturing and packaging specifications for darunavir-related products. Amorphization was observed under thermal storage caused by desolvation of darunavir ethanolate. The ethanolate-to-hydrate conversion of darunavir was observed at high relative humidity conditions. Moreover, acid/base-induced degradations of darunavir have been investigated herein to determine the possible drug-excipient compatibility issues in formulations. Furthermore, it is of particular interests to allow the production of high-quality darunavir-ritonavir fixed dose combinations for marketing in Africa. Thus, a validated HPLC method was developed according to ICH guideline to simultaneously quantify assays of darunavir and ritonavir in a single injection. In summary, the findings of this study provide important information for pharmaceutical scientists to design and develop reliable formulations and processings for darunavir-related products with improved stability.

Collaboration


Dive into the Haichen Nie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge