Joseph W. Lubach
Genentech
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph W. Lubach.
Drug Metabolism and Disposition | 2011
Luna Liu; Jason S. Halladay; Y. Shin; Susan Wong; Melis Coraggio; H. La; M. Baumgardner; H. Le; S. Gopaul; Jason Boggs; P. Kuebler; J. C. Davis; X. C. Liao; Joseph W. Lubach; Alan Deese; C. G. Sowell; K. S. Currie; W. B. Young; S. C. Khojasteh; Cornelis E. C. A. Hop; Harvey Wong
(R)-N-(3-(6-(4-(1,4-Dimethyl-3-oxopiperazin-2-yl)phenylamino)-4-methyl-5-oxo-4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxamide (GDC-0834) is a potent and selective inhibitor of Brutons tyrosine kinase (BTK), investigated as a potential treatment for rheumatoid arthritis. In vitro metabolite identification studies in hepatocytes revealed predominant formation of an inactive metabolite (M1) via amide hydrolysis in human. The formation of M1 appeared to be NADPH-independent in human liver microsomes. M1 was found in only minor to moderate quantities in plasma from preclinical species dosed with GDC-0834. Human clearance predictions using various methodologies resulted in estimates ranging from low to high. In addition, GDC-0834 exhibited low clearance in PXB chimeric mice with humanized liver. Uncertainty in human pharmacokinetic prediction and high interest in a BTK inhibitor for clinical evaluation prompted an investigational new drug strategy, in which GDC-0834 was rapidly advanced to a single-dose human clinical trial. GDC-0834 plasma concentrations in humans were below the limit of quantitation (<1 ng/ml) in most samples from the cohorts dosed orally at 35 and 105 mg. In contrast, substantial plasma concentrations of M1 were observed. In human plasma and urine, only M1 and its sequential metabolites were identified. The formation kinetics of M1 was evaluated in rat, dog, monkey, and human liver microsomes in the absence of NADPH. The maximum rate of M1 formation (Vmax) was substantially higher in human compared with that in other species. In contrast, the Michaelis-Menten constant (Km) was comparable among species. Intrinsic clearance (Vmax/Km) of GDC-0834 from M1 formation in human was 23- to 169-fold higher than observed in rat, dog, and monkey.
Molecular Pharmaceutics | 2015
Yang Song; Xinghao Yang; Xin Chen; Haichen Nie; Stephen R. Byrn; Joseph W. Lubach
This study investigated the presence of specific drug-excipient interactions in amorphous solid dispersions of lapatinib (LB) and four commonly used pharmaceutical polymers, including Soluplus, polyvinylpyrrolidone vinyl acetate (PVPVA), hydroxypropylmethylcellulose acetate succinate (HPMCAS), and hydroxypropylmethylcellulose phthalate (HPMCP). Based on predicted pKa differences, LB was hypothesized to exhibit a specific ionic interaction with HPMCP, and possibly with HPMCAS, while Soluplus and PVPVA were studied as controls without ionizable functionality. Thermal studies showed a single glass transition (Tg) for each dispersion, in close agreement with predicted values for Soluplus, PVPVA, and HPMCAS systems. However, the Tg values of LB-HPMCP solid dispersions were markedly higher than predicted values, indicating a strong intermolecular interaction between LB and HPMCP. (15)N solid-state NMR provided direct spectroscopic evidence for protonation of LB (i.e., salt formation) within the HPMCP solid dispersions. (1)H T1 and (1)H T1ρ relaxation studies of the dispersions supported the ionic interaction hypothesis, and indicated multiple phases in the cases of excess drug or polymer. In addition, the dissolution and stability behavior of each system was examined. Both acidic polymers, HPMCAS and HPMCP, effectively inhibited the crystallization of LB on accelerated stability, likely owing to beneficial strong intermolecular hydrogen and/or specific ionic bonds with the acidic polymers. Soluplus and PVPVA showed poor physical properties on stability and subsequently poor crystallization inhibition.
Drug Metabolism and Disposition | 2013
Edna F. Choo; Jason Boggs; Chunqiang Zhu; Joseph W. Lubach; Nathaniel D. Catron; Gary J. Jenkins; Andrew J. Souers; Richard Voorman
Navitoclax (ABT-263), a Bcl-2 family inhibitor and ABT-199, a Bcl-2 selective inhibitor, are high molecular weight, high logP molecules that show low solubility in aqueous media. While these properties are associated with low oral bioavailability (F), both navitoclax and ABT-199 showed moderate F in preclinical species. The objective of the described study was to determine if lymphatic transport contributes to the systemic availability of navitoclax and ABT-199 in dogs. The intravenous pharmacokinetics of navitoclax and ABT-199 were determined in intact (noncannulated) dogs. In oral studies, tablets (100 mg) of navitoclax and ABT-199 were administered to both intact and thoracic lymph duct–cannulated (TDC) dogs. The clearance of navitoclax and ABT-199 was low; 0.673 and 0.779 ml/min per kilogram, respectively. The volume of distribution of both compounds was low (0.5-0.7 l/kg). The half-lives of navitoclax and ABT-199 were 22.2 and 12.9 hours, respectively. The F of navitoclax and ABT-199 were 56.5 and 38.8%, respectively, in fed intact dogs. In fed TDC dogs, 13.5 and 4.67% of the total navitoclax and ABT-199 doses were observed in lymph with the % F of navitoclax and ABT-199 of 21.7 and 20.2%, respectively. The lower lymphatic transport of ABT-199 corresponds to the lower overall % F of ABT-199 versus navitoclax despite similar systemic availability via the portal vein (similar % F in TDC animals). This is consistent with the higher long chain triglyceride solubility of navitoclax (9.2 mg/ml) versus ABT-199 (2.2 mg/ml). In fasted TDC animals, lymph transport of navitoclax and ABT-199 decreased by 1.8-fold and 10-fold, respectively.
Molecular Pharmaceutics | 2016
Yang Song; Dmitry Zemlyanov; Xin Chen; Haichen Nie; Ziyang Su; Ke Fang; Xinghao Yang; Daniel W. Smith; Stephen R. Byrn; Joseph W. Lubach
This study investigates the potential drug-excipient interactions of polystyrene sulfonic acid (PSSA) and two weakly basic anticancer drugs, lapatinib (LB) and gefitinib (GB), in amorphous solid dispersions. Based on the strong acidity of the sulfonic acid functional group, PSSA was hypothesized to exhibit specific intermolecular acid-base interactions with both model basic drugs. Ultraviolet (UV) spectroscopy identified red shifts, which correlated well with the color change observed in lapatinib-PSSA solutions. Fourier transform infrared (FTIR) spectra suggest the protonation of the quinazoline nitrogen atom in both model compounds, which agrees well with data from the crystalline ditosylate salt of lapatinib. X-ray photoelectron spectroscopy (XPS) detected increases in binding energy of the basic nitrogen atoms in both lapatinib and gefitinib, strongly indicating protonation of these nitrogen atoms. (15)N solid-state NMR spectroscopy provided direct spectroscopic evidence for protonation of the quinazoline nitrogen atoms in both LB and GB, as well as the secondary amine nitrogen atom in LB and the tertiary amine nitrogen atom in GB. The observed chemical shifts in the LB-PSSA (15)N spectrum also agree very well with the lapatinib ditosylate salt where proton transfer is known. Additionally, the dissolution and physical stability behaviors of both amorphous solid dispersions were examined. PSSA was found to significantly improve the dissolution of LB and GB and effectively inhibit the crystallization of LB and GB under accelerated storage conditions due to the beneficial strong intermolecular acid-base interaction between the sulfonic acid groups and basic nitrogen centers.
Bioorganic & Medicinal Chemistry Letters | 2016
Wendy B. Young; James Barbosa; Peter Blomgren; Meire Bremer; James J. Crawford; Donna Dambach; Charles Eigenbrot; Steve Gallion; Adam R. Johnson; Jeffrey E. Kropf; Seung Ho Lee; Lichuan Liu; Joseph W. Lubach; Jen Macaluso; Pat Maciejewski; Scott Mitchell; Daniel F. Ortwine; Julie Di Paolo; Karin Reif; Heleen Scheerens; Aaron C. Schmitt; Xiaojing Wang; Harvey Wong; Jin-Ming Xiong; Jianjun Xu; Christine Yu; Zhongdong Zhao; Kevin S. Currie
BTK inhibitor GDC-0834 (1) was found to be rapidly metabolized in human studies, resulting in a suspension of clinical trials. The primary route of metabolism was through cleavage of the acyclic amide bond connecting the terminal tetrahydrobenzothiophene with the central linker aryl ring. SAR studies were focused on reducing metabolic cleavage of this amide, and resulted in the identification of several central aryl linker substituents that conferred improved stability. The most promising substituted aryl linkers were then incorporated into an optimized pyridazinone scaffold, resulting in the identification of lead analog 23, possessing improved potency, metabolic stability and preclinical properties.
JCI insight | 2017
Arna Katewa; Yugang Wang; Jason A. Hackney; Tao Huang; Eric Suto; Nandhini Ramamoorthi; Cary D. Austin; Meire Bremer; Jacob Chen; James J. Crawford; Kevin S. Currie; Peter A. Blomgren; Jason DeVoss; Julie DiPaolo; Jonathan Hau; Adam R. Johnson; Justin Lesch; Laura DeForge; Zhonghua Lin; Marya Liimatta; Joseph W. Lubach; Sami McVay; Zora Modrusan; Allen Nguyen; Chungkee Poon; Jianyong Wang; Lichuan Liu; Wyne P. Lee; Harvey Wong; Wendy B. Young
Systemic lupus erythematosus (SLE) is often associated with exaggerated B cell activation promoting plasma cell generation, immune-complex deposition in the kidney, renal infiltration of myeloid cells, and glomerular nephritis. Type-I IFNs amplify these autoimmune processes and promote severe disease. Brutons tyrosine kinase (Btk) inhibitors are considered novel therapies for SLE. We describe the characterization of a highly selective reversible Btk inhibitor, G-744. G-744 is efficacious, and superior to blocking BAFF and Syk, in ameliorating severe lupus nephritis in both spontaneous and IFNα-accelerated lupus in NZB/W_F1 mice in therapeutic regimens. Selective Btk inhibition ablated plasmablast generation, reduced autoantibodies, and - similar to cyclophosphamide - improved renal pathology in IFNα-accelerated lupus. Employing global transcriptional profiling of spleen and kidney coupled with cross-species human modular repertoire analyses, we identify similarities in the inflammatory process between mice and humans, and we demonstrate that G-744 reduced gene expression signatures essential for splenic B cell terminal differentiation, particularly the secretory pathway, as well as renal transcriptional profiles coupled with myeloid cell-mediated pathology and glomerular plus tubulointerstitial disease in human glomerulonephritis patients. These findings reveal the mechanism through which a selective Btk inhibitor blocks murine autoimmune kidney disease, highlighting pathway activity that may translate to human SLE.
Molecular Pharmaceutics | 2013
Joseph W. Lubach; Jacob Chen; Jonathan Hau; Jose Imperio; Melis Coraggio; Lichuan Liu; Harvey Wong
Many pharmaceutically active compounds are weak electrolytes and are ionizable in the pH range experienced throughout the gastrointestinal tract. Changes in protonation state due to pH changes in the gut can have dramatic effects on solubility, dissolution, and permeation through biological barriers. Preclinical assessment of the pH-dependence of oral absorption is critical for compounds possessing pH-dependent solubility. Here we examine pH-dependent solubility and oral exposure in rat for three model compounds, dasatinib, ketoconazole, and mefenamic acid. Dasatinib and ketoconazole are both weak bases, while mefenamic acid is a carboxylic acid. The effects of gastric pH modulators, pentagastrin and famotidine, were investigated in rat PK studies to assess the applicability of using the rat to evaluate the risk of pH-dependent oral exposure for ionizable compounds. Dasatinib showed similar exposure between control and pentagastrin-pretreated groups, and 4.5-fold lower AUC in famotidine-pretreated rats. Ketoconazole showed a 2-fold increase in AUC in pentagastrin-treated rats relative to control, and 4.5-fold lower AUC in famotidine treated rats, relative to the pentagastrin group. Mefenamic acid showed highly similar exposures among control, pentagastrin-pretreated, and famotidine-pretreated groups. The rat model was shown to be useful for compounds displaying pH-dependent solubility and oral absorption that may be affected by gastric pH modulators.
International Journal of Pharmaceutics | 2016
Yang Song; Dmitry Zemlyanov; Xin Chen; Ziyang Su; Haichen Nie; Joseph W. Lubach; Daniel W. Smith; Stephen R. Byrn; Rodolfo Pinal
This study investigates drug-excipient interactions in amorphous solid dispersions (ASDs) of the model basic compound lumefantrine (LMN), with five acidic polymers. X-ray photoelectron spectroscopy (XPS) was used to measure the extent of the protonation of the tertiary amine in LMN by the five acidic polymers. The extent/efficiency of protonation of the ASDs was assessed a function of polymer type, manufacturing process (hot-melt extrusion vs. spray drying), and drug loading (DL). The most strongly acidic polymer, polystyrene sulfonic acid (PSSA) was found to be the most efficient polymer in protonating LMN, independently of manufacturing method and DL. The rank order for the protonation extent of LMN by each polymer is roughtly the same for both manufacturing processes. However, protonation efficiency of polymers of similar acidic strength ranged from ∼0% to 75% (HPMCAS and Eudragit L100-55, respectively), suggesting an important role of molecular/mixing effects. For some polymers, including Eudragit L100 55 and HPMCP, spray-drying resulted in higher protonation efficiency compared to hot-melt extrusion. This result is attributable to a more favorable encounter between acid and base groups, when exposed to each other in solution phase. Increasing DL led to decreased protonation efficiency in most cases, particularly for polyacrylic acid, despite having the highest content of acidic groups per unit mass. These results indicate that the combined effects of acid strength and mixing phenomena regulate the efficiency of acid-base interactions in the ASDs.
European Journal of Pharmaceutics and Biopharmaceutics | 2016
Feng Zhang; Fan Meng; Joseph W. Lubach; Joseph Koleng; Watson Na
The interactions between poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) in aqueous medium at pH 6.8 were investigated in the current study. We have also studied the effect of interpolymer interactions and various formulation variables, including the molecular weight of PEO, the ratio between PEO and PAA, the crystallinity of PEO, and the presence of an acidifying agent, on the release of theophylline from matrix tablets containing both PEO and PAA as release retardants. At pH 6.8, the synergy in solution viscosity between PEO and PAA as the result of ion-dipole interaction was observed in this study. The release of theophylline from the matrix tablets containing physical mixtures of PEO and PAA was found to be a function of dissolution medium pH because of the pH-dependent interactions between these two polymers. Because of the formation of water insoluble interpolymer complex between PEO and PAA in aqueous medium at pH below 4.0, the release of theophylline was independent of PEO molecular weight and was controlled by Fickian diffusion mechanism in 0.01N hydrochloric acid solution. In comparison, the drug release was a function of PEO molecular weight and followed the anomalous transport mechanism in phosphate buffer pH 6.8. The presence of PAA exerted opposite effects on the release of theophylline in phosphate buffer pH 6.8. In one aspect, theophylline release was accelerated because the erosion of PAA was much faster than that of PEO at pH6.8. On the opposite aspect, theophylline release was slowed down because of the formation of insoluble complex inside the gel layer as the result of the acidic microenvironment induced by PAA, and the increase in the viscosity of the gel layer as the result of the synergy between PEO and PAA. These two opposite effects offset each other. As a result, the release of theophylline remained statistically the same even when 75% PEO in the formulation was replaced with PAA. In phosphate buffer pH 6.8, the release of theophylline was independent of the crystalline form of PEO. The release profile remained identical whether PEO was present as a semicrystalline powder blend with PAA or an amorphous complex with PAA in the matrix tablets. It has also been observed that the presence of citric acid as an acidifying agent had negligible effect on the drug release rate.
Molecular Pharmaceutics | 2013
Paroma Chakravarty; Joseph W. Lubach
GNE068-PC, a developmental compound, was previously characterized to be mesomorphous, i.e. having long-range order associated with significant local molecular disorder (Chakravarty et. al., Mol. Pharmaceutics, accepted). The compound was exposed to moisture under different relative humidity conditions ranging from 11% to 60% RH at room temperature (RT) for 7 days, and the resultant product phases were characterized. The partially ordered sample progressively lost crystallinity (long-range order) and birefringence (orientational order) upon exposure to increasing RH conditions, leading to the formation of a completely disordered amorphous phase at 60% RH (RT). Long-range positional order was irrecoverable even after moisture removal from the sample exposed to 60% RH. This was attributed to replacement of residual ethyl acetate by water, the former being critical for maintenance of long-range order in the material. In addition, water sorption appeared to irreversibly alter the molecular orientation, thereby affecting sample birefringence. Solid-state NMR revealed increases in (1)H and (13)C spin-lattice relaxation times (T1) going from the mesomorphous phase to the fully amorphous phase. This was indicative of reduction in lattice mobility, likely due to the decreased motion of the aromatic portions of the molecule, in particular C17, which showed the most dramatic increase in (13)C T1. This is likely due to decrease in available free volume upon water sorption. Drying of the hydrated disordered phase showed somewhat greater mobility than the hydrated phase, likely due to increased relative free volume through removal of water. A water-solid interaction therefore irreversibly changed the solid-state makeup of GNE068-PC.