Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Haixia Xiao is active.

Publication


Featured researches published by Haixia Xiao.


PLOS ONE | 2007

Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark.

Kegong Tian; Xiuling Yu; Tiezhu Zhao; Youjun Feng; Zhen Cao; Chuanbin Wang; Yan Hu; Xizhao Chen; Dongmei Hu; Xinsheng Tian; Di Liu; Shuo Zhang; Xiaoyu Deng; Yinqiao Ding; Lu-Lu Yang; Yunxia Zhang; Haixia Xiao; Mingming Qiao; Bin-Bin Wang; Lili Hou; Xiaoying Wang; Xinyan Yang; Liping Kang; Ming Sun; Ping Jin; Shujuan Wang; Yoshihiro Kitamura; Jinghua Yan; George F. Gao

Porcine reproductive and respiratory syndrome (PRRS) is a severe viral disease in pigs, causing great economic losses worldwide each year. The causative agent of the disease, PRRS virus (PRRSV), is a member of the family Arteriviridae. Here we report our investigation of the unparalleled large-scale outbreaks of an originally unknown, but so-called “high fever” disease in China in 2006 with the essence of PRRS, which spread to more than 10 provinces (autonomous cities or regions) and affected over 2,000,000 pigs with about 400,000 fatal cases. Different from the typical PRRS, numerous adult sows were also infected by the “high fever” disease. This atypical PRRS pandemic was initially identified as a hog cholera-like disease manifesting neurological symptoms (e.g., shivering), high fever (40–42°C), erythematous blanching rash, etc. Autopsies combined with immunological analyses clearly showed that multiple organs were infected by highly pathogenic PRRSVs with severe pathological changes observed. Whole-genome analysis of the isolated viruses revealed that these PRRSV isolates are grouped into Type II and are highly homologous to HB-1, a Chinese strain of PRRSV (96.5% nucleotide identity). More importantly, we observed a unique molecular hallmark in these viral isolates, namely a discontinuous deletion of 30 amino acids in nonstructural protein 2 (NSP2). Taken together, this is the first comprehensive report documenting the 2006 epidemic of atypical PRRS outbreak in China and identifying the 30 amino-acid deletion in NSP2, a novel determining factor for virulence which may be implicated in the high pathogenicity of PRRSV, and will stimulate further study by using the infectious cDNA clone technique.


The Lancet | 2013

Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses

Di Liu; Weifeng Shi; Yi Shi; Dayan Wang; Haixia Xiao; Wei Li; Yuhai Bi; Ying Wu; Xianbin Li; Jinghua Yan; Wenjun Liu; Guoping Zhao; Weizhong Yang; Wang Y; Juncai Ma; Yuelong Shu; Fumin Lei; George F. Gao

BACKGROUND On March 30, 2013, a novel avian influenza A H7N9 virus that infects human beings was identified. This virus had been detected in six provinces and municipal cities in China as of April 18, 2013. We correlated genomic sequences from avian influenza viruses with ecological information and did phylogenetic and coalescent analyses to extrapolate the potential origins of the virus and possible routes of reassortment events. METHODS We downloaded H7N9 virus genome sequences from the Global Initiative on Sharing Avian Influenza Data (GISAID) database and public sequences used from the Influenza Virus Resource. We constructed phylogenetic trees and did 1000 bootstrap replicates for each tree. Two rounds of phylogenetic analyses were done. We used at least 100 closely related sequences for each gene to infer the overall topology, removed suspicious sequences from the trees, and focused on the closest clades to the novel H7N9 viruses. We compared our tree topologies with those from a bayesian evolutionary analysis by sampling trees (BEAST) analysis. We used the bayesian Markov chain Monte Carlo method to jointly estimate phylogenies, divergence times, and other evolutionary parameters for all eight gene fragments. We used sequence alignment and homology-modelling methods to study specific mutations regarding phenotypes, specifically addressing the human receptor binding properties. FINDINGS The novel avian influenza A H7N9 virus originated from multiple reassortment events. The HA gene might have originated from avian influenza viruses of duck origin, and the NA gene might have transferred from migratory birds infected with avian influenza viruses along the east Asian flyway. The six internal genes of this virus probably originated from two different groups of H9N2 avian influenza viruses, which were isolated from chickens. Detailed analyses also showed that ducks and chickens probably acted as the intermediate hosts leading to the emergence of this virulent H7N9 virus. Genotypic and potential phenotypic differences imply that the isolates causing this outbreak form two separate subclades. INTERPRETATION The novel avian influenza A H7N9 virus might have evolved from at least four origins. Diversity among isolates implies that the H7N9 virus has evolved into at least two different lineages. Unknown intermediate hosts involved might be implicated, extensive global surveillance is needed, and domestic-poultry-to-person transmission should be closely watched in the future. FUNDING China Ministry of Science and Technology Project 973, National Natural Science Foundation of China, China Health and Family Planning Commission, Chinese Academy of Sciences.


Nature | 2013

Receptor binding by a ferret-transmissible H5 avian influenza virus

Xiaoli Xiong; Peter J. Coombs; Stephen R. Martin; Junfeng Liu; Haixia Xiao; John W. McCauley; Kathrin Locher; Philip A. Walker; Patrick J. Collins; Yoshihiro Kawaoka; John J. Skehel; Steven J. Gamblin

Cell-surface-receptor binding by influenza viruses is a key determinant of their transmissibility, both from avian and animal species to humans as well as from human to human. Highly pathogenic avian H5N1 viruses that are a threat to public health have been observed to acquire affinity for human receptors, and transmissible-mutant-selection experiments have identified a virus that is transmissible in ferrets, the generally accepted experimental model for influenza in humans. Here, our quantitative biophysical measurements of the receptor-binding properties of haemagglutinin (HA) from the transmissible mutant indicate a small increase in affinity for human receptor and a marked decrease in affinity for avian receptor. From analysis of virus and HA binding data we have derived an algorithm that predicts virus avidity from the affinity of individual HA–receptor interactions. It reveals that the transmissible-mutant virus has a 200-fold preference for binding human over avian receptors. The crystal structure of the transmissible-mutant HA in complex with receptor analogues shows that it has acquired the ability to bind human receptor in the same folded-back conformation as seen for HA from the 1918, 1957 (ref. 4), 1968 (ref. 5) and 2009 (ref. 6) pandemic viruses. This binding mode is substantially different from that by which non-transmissible wild-type H5 virus HA binds human receptor. The structure of the complex also explains how the change in preference from avian to human receptors arises from the Gln226Leu substitution, which facilitates binding to human receptor but restricts binding to avian receptor. Both features probably contribute to the acquisition of transmissibility by this mutant virus.


Journal of General Virology | 2008

H5N1 avian influenza re-emergence of Lake Qinghai: phylogenetic and antigenic analyses of the newly isolated viruses and roles of migratory birds in virus circulation.

Guihua Wang; Dawei Zhan; Laixing Li; Fumin Lei; Bohua Liu; Di Liu; Haixia Xiao; Youjun Feng; Jing Li; Baoan Yang; Zuohua Yin; Xiaohui Song; Xiaojia Zhu; Yanlong Cong; Juan Pu; Jian Wang; Jinhua Liu; George F. Gao; Qingyu Zhu

Highly pathogenic avian influenza H5N1 virus has swept west across the globe and caused serious debates on the roles of migratory birds in virus circulation since the first large-scale outbreak in migratory birds of Lake Qinghai, 2005. In May 2006, another outbreak struck Lake Qinghai and six novel strains were isolated. To elucidate these QH06 viruses, the six isolates were subjected to whole-genome sequencing. Phylogenetic analyses show that QH06 viruses are derived from the lineages of Lake Qinghai, 2005. Five of the six novel isolates are adjacent to the strain A/Cygnus olor/Croatia/1/05, and the last one is related to the strain A/duck/Novosibirsk/02/05, an isolate of the flyway. Antigenic analyses suggest that QH06 and QH05 viruses are similar to each other. These findings implicate that QH06 viruses of Lake Qinghai may travel back via migratory birds, though not ruling out the possibility of local circulation of viruses of Lake Qinghai.


Nature Communications | 2014

Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus

Lunbiao Cui; Di Liu; Weifeng Shi; Jingcao Pan; Xian Qi; Xianbin Li; Xiling Guo; Minghao Zhou; Wei Li; Jun Li; Joel Haywood; Haixia Xiao; Xinfen Yu; Xiaoying Pu; Ying Wu; Huiyan Yu; Kangchen Zhao; Yefei Zhu; Bin Wu; Tao Jin; Zhiyang Shi; Fenyang Tang; Fengcai Zhu; Qinglan Sun; Linhuan Wu; Ruifu Yang; Jinghua Yan; Fumin Lei; Baoli Zhu; Wenjun Liu

Influenza A (H7N9) virus has been causing human infections in China since February 2013, raising serious concerns of potential pandemics. Previous studies demonstrate that human infection is directly linked to live animal markets, and that the internal genes of the virus are derived from H9N2 viruses circulating in the Yangtze River Delta area in Eastern China. Here following analysis of 109 viruses, we show a much higher genetic heterogeneity of the H7N9 viruses than previously reported, with a total of 27 newly designated genotypes. Phylogenetic and genealogical inferences reveal that genotypes G0 and G2.6 dominantly co-circulate within poultry, with most human isolates belonging to the genotype G0. G0 viruses are also responsible for the inter- and intra-province transmissions, leading to the genesis of novel genotypes. These observations suggest the province-specific H9N2 virus gene pools increase the genetic diversity of H7N9 via dynamic reassortments and also imply that G0 has not gained overwhelming fitness and the virus continues to undergo reassortment.


Journal of Virology | 2013

Structure of the Fusion Core and Inhibition of Fusion by a Heptad Repeat Peptide Derived from the S Protein of Middle East Respiratory Syndrome Coronavirus

Jing Gao; Guangwen Lu; Jianxun Qi; Yan Li; Ying Wu; Yao Deng; Heyuan Geng; Hongbin Li; Qihui Wang; Haixia Xiao; Wenjie Tan; Jinghua Yan; George F. Gao

ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) recently emerged as a severe worldwide public health concern. The virus is highly pathogenic, manifesting in infected patients with an approximately 50% fatality rate. It is known that the surface spike (S) proteins of coronaviruses mediate receptor recognition and membrane fusion, thereby playing an indispensable role in initiating infection. In this process, heptad repeats 1 and 2 (HR1 and HR2) of the S protein assemble into a complex called the fusion core, which represents a key membrane fusion architecture. To date, however, the MERS-CoV fusion core remains uncharacterized. In this study, we performed a series of biochemical and biophysical analyses characterizing the HR1/HR2 complexes of this novel virus. The HR sequences were variably truncated and then connected with a flexible amino acid linker. In each case, the recombinant protein automatically assembled into a trimer in solution, displaying a typical α-helical structure. One of these trimers was successfully crystallized, and its structure was solved at a resolution of 1.9 Å. A canonical 6-helix bundle, like those reported for other coronaviruses, was revealed, with three HR1 helices forming the central coiled-coil core and three HR2 chains surrounding the core in the HR1 side grooves. This demonstrates that MERS-CoV utilizes a mechanism similar to those of other class I enveloped viruses for membrane fusion. With this notion, we further identified an HR2-based peptide that could potently inhibit MERS-CoV fusion and entry by using a pseudotyped-virus system. These results lay the groundwork for future inhibitory peptidic drug design.


Cell Research | 2013

Characterization of two distinct neuraminidases from avian-origin human-infecting H7N9 influenza viruses

Yan Wu; Yuhai Bi; Christopher J. Vavricka; Xiaoman Sun; Yanfang Zhang; Feng Gao; Min Zhao; Haixia Xiao; Cheng-Feng Qin; Jianhua(何建华) He; Wenjun Liu; Jinghua Yan; Jianxun Qi; George F. Gao

An epidemic of an avian-origin H7N9 influenza virus has recently emerged in China, infecting 134 patients of which 45 have died. This is the first time that an influenza virus harboring an N9 serotype neuraminidase (NA) has been known to infect humans. H7N9 viruses are divergent and at least two distinct NAs and hemagglutinins (HAs) have been found, respectively, from clinical isolates. The prototypes of these viruses are A/Anhui/1/2013 and A/Shanghai/1/2013. NAs from these two viruses are distinct as the A/Shanghai/1/2013 NA has an R294K substitution that can confer NA inhibitor oseltamivir resistance. Oseltamivir is by far the most commonly used anti-influenza drug due to its potency and high bioavailability. In this study, we show that an R294K substitution results in multidrug resistance with extreme oseltamivir resistance (over 100 000-fold) using protein- and virus-based assays. To determine the molecular basis for the inhibitor resistance, we solved high-resolution crystal structures of NAs from A/Anhui/1/2013 N9 (R294-containing) and A/Shanghai/1/2013 N9 (K294-containing). R294K substitution results in an unfavorable E276 conformation for oseltamivir binding, and consequently loss of inhibitor carboxylate interactions, which compromises the binding of all classical NA ligands/inhibitors. Moreover, we found that R294K substitution results in reduced NA catalytic efficiency along with lower viral fitness. This helps to explain why K294 has predominantly been found in clinical cases of H7N9 infection under the selective pressure of oseltamivir treatment and not in the dominant human-infecting viruses. This implies that oseltamivir can still be efficiently used in the treatment of H7N9 infections.


Virology Journal | 2009

Analysis of hemagglutinin-mediated entry tropism of H5N1 avian influenza

Ying Guo; Emily Rumschlag-Booms; Jizhen Wang; Haixia Xiao; Jia Yu; Jianwei Wang; Li Guo; George F. Gao; Youjia Cao; Michael Caffrey; Lijun Rong

BackgroundAvian influenza virus H5N1 is a major concern as a potential global pandemic. It is thought that multiple key events must take place before efficient human-to-human transmission of the virus occurs. The first step in overcoming host restriction is viral entry which is mediated by HA, responsible for both viral attachment and viral/host membrane fusion. HA binds to glycans-containing receptors with terminal sialic acid (SA). It has been shown that avian influenza viruses preferentially bind to α2,3-linked SAs, while human influenza A viruses exhibit a preference for α2,6-linked SAs. Thus it is believed the precise linkage of SAs on the target cells dictate host tropism of the viruses.ResultsWe demonstrate that H5N1 HA/HIV pseudovirus can efficiently transduce several human cell lines including human lung cells. Interestingly, using a lectin binding assay we show that the presence of both α2,6-linked and α2,3-linked SAs on the target cells does not always correlate with efficient transduction. Further, HA substitutions of the residues implicated in switching SA-binding between avian and human species did not drastically affect HA-mediated transduction of the target cells or target cell binding.ConclusionOur results suggest that a host factor(s), which is yet to be identified, is required for H5N1 entry in the host cells.


Current Opinion in Virology | 2014

H7N9: a low pathogenic avian influenza A virus infecting humans

Jun Liu; Haixia Xiao; Yan Wu; Di Liu; Xiaopeng Qi; Yi Shi; George F. Gao

Human infections by the newly reassorted avian influenza A (H7N9) virus were reported for the first time in early 2013, and the virus was confirmed to be a low pathogenic avian influenza virus in poultry. Because continuously reported cases have been increasing since the summer of 2013, this novel virus poses a potential threat to public health in China and is attracting broad attention worldwide. In this review, we summarize and discuss the characteristics of the H7N9 virus revealed by the recent timely studies from the perspectives of epidemiology, host preference, clinical manifestations, immunopathogenesis, drug resistance, vaccine development, and burden of disease. This knowledge about the novel avian-origin H7N9 virus will provide a useful reference for clinical interventions of human infections and help to rapidly pave the way to develop an efficient and safe vaccine.


Journal of Virology | 2015

Assessment of the Internal Genes of Influenza A (H7N9) Virus Contributing to High Pathogenicity in Mice

Yuhai Bi; Qing Xie; Shuang Zhang; Yun Li; Haixia Xiao; Tao Jin; Weinan Zheng; Jing Li; Xiaojuan Jia; Lei Sun; Jinhua Liu; Chuan Qin; George F. Gao; Wenjun Liu

ABSTRACT The recently identified H7N9 influenza A virus has caused severe economic losses and worldwide public concern. Genetic analysis indicates that its six internal genes all originated from H9N2 viruses. However, the H7N9 virus is more highly pathogenic in humans than H9N2, which suggests that the internal genes of H7N9 have mutated. To analyze which H7N9 virus internal genes contribute to its high pathogenicity, a series of reassortants was generated by reverse genetics, with each virus containing a single internal gene of the typical A/Anhui/1/2013 (H7N9) (AH-H7N9) virus in the genetic background of the A/chicken/Shandong/lx1023/2007 (H9N2) virus. The replication ability, polymerase activity, and pathogenicity of these viruses were then evaluated in vitro and in vivo. These recombinants displayed high genetic compatibility, and the H7N9-derived PB2, M, and NP genes were identified as the virulence genes for the reassortants in mice. Further investigation confirmed that the PB2 K627 residue is critical for the high pathogenicity of the H7N9 virus and the reassortant containing the H7N9-derived PB2 segment (H9N2-AH/PB2). Notably, the H7N9-derived PB2 gene displayed greater compatibility with the H9N2 genome than that of H7N9, endowing the H9N2-AH/PB2 reassortant with greater viability and virulence than the parental H7N9 virus. In addition, the H7N9 virus, with the exception of the H9N2 reassortants, could effectively replicate in human A549 cells. Our results indicate that PB2, M, and NP are the key virulence genes, together with the surface hemagglutinin (HA) and neuraminidase (NA) proteins, contributing to the high infectivity of the H7N9 virus in humans. IMPORTANCE To date, the novel H7N9 influenza A virus has caused 437 human infections, with approximately 30% mortality. Previous work has primarily focused on the two viral surface proteins, HA and NA, but the contribution of the six internal genes to the high pathogenicity of H7N9 has not been systematically studied. Here, the H9N2 virus was used as a genetic backbone to evaluate the virulence genes of H7N9 virus in vitro and in vivo. Our data indicate that the PB2, M, and NP genes play important roles in viral infection in mice and, together with HA and NA, contribute to the high infectivity of the H7N9 virus in humans.

Collaboration


Dive into the Haixia Xiao's collaboration.

Top Co-Authors

Avatar

George F. Gao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jinghua Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Di Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianxun Qi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yi Shi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenjun Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yuhai Bi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ying Wu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Fumin Lei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Juncai Ma

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge