Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hamada AbdElgawad is active.

Publication


Featured researches published by Hamada AbdElgawad.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species

Yongshuo H. Fu; Matteo Campioli; Yann Vitasse; Hans J. De Boeck; Joke Van den Berge; Hamada AbdElgawad; Han Asard; Shilong Piao; Gaby Deckmyn; Ivan A. Janssens

Significance Leaf phenology of temperate ecosystems is shifting in response to global warming. This affects surface albedo, ecosystem carbon balance, and evapotranspiration, and the response of leaf phenology to climatic drivers has therefore received particular interest. However, despite considerable effort, models have failed to accurately reproduce phenology patterns, likely because mechanistic understanding is incomplete. Here, we show that earlier leaf flushing in response to a warm winter translated into earlier leaf senescence and even earlier leaf flushing in the following year. This legacy effect of winter warming on leaf phenology has important implications for understanding and modelling leaf phenology and its impact on ecosystem functioning, especially in relation to global warming, and is likely to open new research lines. Recent temperature increases have elicited strong phenological shifts in temperate tree species, with subsequent effects on photosynthesis. Here, we assess the impact of advanced leaf flushing in a winter warming experiment on the current year’s senescence and next year’s leaf flushing dates in two common tree species: Quercus robur L. and Fagus sylvatica L. Results suggest that earlier leaf flushing translated into earlier senescence, thereby partially offsetting the lengthening of the growing season. Moreover, saplings that were warmed in winter–spring 2009–2010 still exhibited earlier leaf flushing in 2011, even though the saplings had been exposed to similar ambient conditions for almost 1 y. Interestingly, for both species similar trends were found in mature trees using a long-term series of phenological records gathered from various locations in Europe. We hypothesize that this long-term legacy effect is related to an advancement of the endormancy phase (chilling phase) in response to the earlier autumnal senescence. Given the importance of phenology in plant and ecosystem functioning, and the prediction of more frequent extremely warm winters, our observations and postulated underlying mechanisms should be tested in other species.


Frontiers in Plant Science | 2016

High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs

Hamada AbdElgawad; Gaurav Zinta; Momtaz M. Hegab; Renu Pandey; Han Asard; Walid Abuelsoud

Salinity negatively affects plant growth and causes significant crop yield losses world-wide. Maize is an economically important cereal crop affected by high salinity. In this study, maize seedlings were subjected to 75 mM and 150 mM NaCl, to emulate high soil salinity. Roots, mature leaves (basal leaf-pair 1,2) and young leaves (distal leaf-pair 3,4) were harvested after 3 weeks of sowing. Roots showed the highest reduction in biomass, followed by mature and young leaves in the salt-stressed plants. Concomitant with the pattern of growth reduction, roots accumulated the highest levels of Na+ followed by mature and young leaves. High salinity induced oxidative stress in the roots and mature leaves, but to a lesser extent in younger leaves. The younger leaves showed increased electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) concentrations only at 150 mM NaCl. Total antioxidant capacity (TAC) and polyphenol content increased with the increase in salinity levels in roots and mature leaves, but showed no changes in the young leaves. Under salinity stress, reduced ascorbate (ASC) and glutathione (GSH) content increased in roots, while total tocopherol levels increased specifically in the shoot tissues. Similarly, redox changes estimated by the ratio of redox couples (ASC/total ascorbate and GSH/total glutathione) showed significant decreases in the roots. Activities of enzymatic antioxidants, catalase (CAT, EC 1.11.1.6) and dehydroascorbate reductase (DHAR, EC 1.8.5.1), increased in all organs of salt-treated plants, while superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione-s-transferase (GST, EC 2.5.1.18) and glutathione reductase (GR, EC 1.6.4.2) increased specifically in the roots. Overall, these results suggest that Na+ is retained and detoxified mainly in roots, and less stress impact is observed in mature and younger leaves. This study also indicates a possible role of ROS in the systemic signaling from roots to leaves, allowing leaves to activate their defense mechanisms for better protection against salt stress.


Global Change Biology | 2014

Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels

Gaurav Zinta; Hamada AbdElgawad; Malgorzata A. Domagalska; Lucia Vergauwen; Dries Knapen; Ivan Nijs; Ivan A. Janssens; Gerrit T.S. Beemster; Han Asard

Climate changes increasingly threaten plant growth and productivity. Such changes are complex and involve multiple environmental factors, including rising CO2 levels and climate extreme events. As the molecular and physiological mechanisms underlying plant responses to realistic future climate extreme conditions are still poorly understood, a multiple organizational level analysis (i.e. eco-physiological, biochemical, and transcriptional) was performed, using Arabidopsis exposed to incremental heat wave and water deficit under ambient and elevated CO2 . The climate extreme resulted in biomass reduction, photosynthesis inhibition, and considerable increases in stress parameters. Photosynthesis was a major target as demonstrated at the physiological and transcriptional levels. In contrast, the climate extreme treatment induced a protective effect on oxidative membrane damage, most likely as a result of strongly increased lipophilic antioxidants and membrane-protecting enzymes. Elevated CO2 significantly mitigated the negative impact of a combined heat and drought, as apparent in biomass reduction, photosynthesis inhibition, chlorophyll fluorescence decline, H2 O2 production, and protein oxidation. Analysis of enzymatic and molecular antioxidants revealed that the stress-mitigating CO2 effect operates through up-regulation of antioxidant defense metabolism, as well as by reduced photorespiration resulting in lowered oxidative pressure. Therefore, exposure to future climate extreme episodes will negatively impact plant growth and production, but elevated CO2 is likely to mitigate this effect.


Plant Physiology | 2014

A Novel Protective Function for Cytokinin in the Light Stress Response Is Mediated by the ARABIDOPSIS HISTIDINE KINASE2 and ARABIDOPSIS HISTIDINE KINASE3 Receptors

Anne Cortleven; Marion Klaumünzer; Hamada AbdElgawad; Han Asard; Bernhard Grimm; Michael Riefler; Thomas Schmülling

Cytokinin protects plants from the consequences of light stress by acting on reactive oxygen species scavenging and D1 protein levels, thereby preventing photoinhibition. Cytokinins are plant hormones that regulate diverse processes in plant development and responses to biotic and abiotic stresses. In this study, we show that Arabidopsis (Arabidopsis thaliana) plants with a reduced cytokinin status (i.e. cytokinin receptor mutants and transgenic cytokinin-deficient plants) are more susceptible to light stress compared with wild-type plants. This was reflected by a stronger photoinhibition after 24 h of high light (approximately 1,000 µmol m−2 s−1), as shown by the decline in maximum quantum efficiency of photosystem II photochemistry. Photosystem II, especially the D1 protein, is highly sensitive to the detrimental impact of light. Therefore, photoinhibition is always observed when the rate of photodamage exceeds the rate of D1 repair. We demonstrate that in plants with a reduced cytokinin status, the D1 protein level was strongly decreased upon light stress. Inhibition of the D1 repair cycle by lincomycin treatment indicated that these plants experience stronger photodamage. The efficiency of photoprotective mechanisms, such as nonenzymatic and enzymatic scavenging systems, was decreased in plants with a reduced cytokinin status, which could be a cause for the increased photodamage and subsequent D1 degradation. Additionally, slow and incomplete recovery in these plants after light stress indicated insufficient D1 repair. Mutant analysis revealed that the protective function of cytokinin during light stress depends on the ARABIDOPSIS HISTIDINE KINASE2 (AHK2) and AHK3 receptors and the type B ARABIDOPSIS RESPONSE REGULATOR1 (ARR1) and ARR12. We conclude that proper cytokinin signaling and regulation of specific target genes are necessary to protect leaves efficiently from light stress.


PLOS ONE | 2014

Anti-Oxidative Defences Are Modulated Differentially in Three Freshwater Teleosts in Response to Ammonia-Induced Oxidative Stress

Amit Kumar Sinha; Hamada AbdElgawad; Terri Giblen; Gaurav Zinta; Michelle De Rop; Han Asard; Ronny Blust; Gudrun De Boeck

Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA) were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed to 1 mM ammonia (as NH4HCO3) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h–48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h–180 h); which was accompanied by a concomitant increase in superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase) enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the antioxidant potential clearly differ between salmonid and cyprinid species.


Plant Physiology | 2015

Drought Induces Distinct Growth Response, Protection and Recovery Mechanisms in the Maize Leaf Growth Zone

Viktoriya Avramova; Hamada AbdElgawad; Zhengfeng Zhang; Romina Casadevall; Lucia Vergauwen; Dries Knapen; Edith Taleisnik; Yves Guisez; Han Asard; Gerrit T.S. Beemster

Drought inhibits cell division and expansion in the maize leaf growth zone by reducing antioxidant levels and increases photosynthetic capacity to allow for enhanced growth upon recovery. Drought is the most important crop yield-limiting factor, and detailed knowledge of its impact on plant growth regulation is crucial. The maize (Zea mays) leaf growth zone offers unique possibilities for studying the spatiotemporal regulation of developmental processes by transcriptional analyses and methods that require more material, such as metabolite and enzyme activity measurements. By means of a kinematic analysis, we show that drought inhibits maize leaf growth by inhibiting cell division in the meristem and cell expansion in the elongation zone. Through a microarray study, we observed the down-regulation of 32 of the 54 cell cycle genes, providing a basis for the inhibited cell division. We also found evidence for an up-regulation of the photosynthetic machinery and the antioxidant and redox systems. This was confirmed by increased chlorophyll content in mature cells and increased activity of antioxidant enzymes and metabolite levels across the growth zone, respectively. We demonstrate the functional significance of the identified transcriptional reprogramming by showing that increasing the antioxidant capacity in the proliferation zone, by overexpression of the Arabidopsis (Arabidopsis thaliana) iron-superoxide dismutase gene, increases leaf growth rate by stimulating cell division. We also show that the increased photosynthetic capacity leads to enhanced photosynthesis upon rewatering, facilitating the often-observed growth compensation.


Plant Science | 2015

Elevated CO2 mitigates drought and temperature-induced oxidative stress differently in grasses and legumes

Hamada AbdElgawad; Evelyn Roxana Farfan-Vignolo; Dirk De Vos; Han Asard

Increasing atmospheric CO2 will affect plant growth, including mitigation of stress impact. Such effects vary considerably between species-groups. Grasses (Lolium perenne, Poa pratensis) and legumes (Medicago lupulina, Lotus corniculatus) were subjected to drought, elevated temperature and elevated CO2. Drought inhibited plant growth, photosynthesis and stomatal conductance, and induced osmolytes and antioxidants in all species. In contrast, oxidative damage was more strongly induced in the legumes than in the grasses. Warming generally exacerbated drought effects, whereas elevated CO2 reduced stress impact. In the grasses, photosynthesis and chlorophyll levels were more protected by CO2 than in the legumes. Oxidative stress parameters (lipid peroxidation, H2O2 levels), on the other hand, were generally more reduced in the legumes. This is consistent with changes in molecular antioxidants, which were reduced by elevated CO2 in the grasses, but not in the legumes. Antioxidant enzymes decreased similarly in both species-groups. The ascorbate-glutathione cycle was little affected by drought and CO2. Overall, elevated CO2 reduced drought effects in grasses and legumes, and this mitigation was stronger in the legumes. This is possibly explained by stronger reduction in H2O2 generation (photorespiration and NADPH oxidase), and a higher availability of molecular antioxidants. The grass/legume-specificity was supported by principal component analysis.


Molecules | 2015

Metabolic analysis of various date palm fruit (Phoenix dactylifera L.) cultivars from Saudi Arabia to assess their nutritional quality

Ismail Hamad; Hamada AbdElgawad; Soad Al Jaouni; Gaurav Zinta; Han Asard; Sherif T. S. Hassan; Momtaz M. Hegab; Nashwa Hagagy; Samy Selim; Saudi Arabia

Date palm is an important crop, especially in the hot-arid regions of the world. Date palm fruits have high nutritional and therapeutic value and possess significant antibacterial and antifungal properties. In this study, we performed bioactivity analyses and metabolic profiling of date fruits of 12 cultivars from Saudi Arabia to assess their nutritional value. Our results showed that the date extracts from different cultivars have different free radical scavenging and anti-lipid peroxidation activities. Moreover, the cultivars showed significant differences in their chemical composition, e.g., the phenolic content (10.4–22.1 mg/100 g DW), amino acids (37–108 μmol·g−1 FW) and minerals (237–969 mg/100 g DW). Principal component analysis (PCA) showed a clear separation of the cultivars into four different groups. The first group consisted of the Sokary, Nabtit Ali cultivars, the second group of Khlas Al Kharj, Khla Al Qassim, Mabroom, Khlas Al Ahsa, the third group of Khals Elshiokh, Nabot Saif, Khodry, and the fourth group consisted of Ajwa Al Madinah, Saffawy, Rashodia, cultivars. Hierarchical cluster analysis (HCA) revealed clustering of date cultivars into two groups. The first cluster consisted of the Sokary, Rashodia and Nabtit Ali cultivars, and the second cluster contained all the other tested cultivars. These results indicate that date fruits have high nutritive value, and different cultivars have different chemical composition.


PLOS ONE | 2014

Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators.

Hamada AbdElgawad; Darin Peshev; Gaurav Zinta; Wim Van den Ende; Ivan A. Janssens; Han Asard

Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N) fixing legumes Medicago lupulina and Lotus corniculatus were subjected to water deficit at elevated temperature (+3°C), under ambient CO2 (392 ppm) and elevated CO2 (620 ppm). As a general observation, the effects of the climate extreme were larger and more ubiquitous in combination with elevated CO2. The imposed climate extreme increased non-structural carbohydrate and phenolics in all species, whereas it increased lignin in legumes and decreased tannins in grasses. However, there was no significant effect of climate extreme on structural carbohydrates, proteins, lipids and mineral contents and stoichiometric ratios. In combination with elevated CO2, climate extreme elicited larger increases in fructan and sucrose content in the grasses without affecting the total carbohydrate content, while it significantly increased total carbohydrates in legumes. The accumulation of carbohydrates in legumes was accompanied by higher activity of sucrose phosphate synthase, sucrose synthase and ADP-Glc pyrophosphorylase. In the legumes, elevated CO2 in combination with climate extreme reduced protein, phosphorus (P) and magnesium (Mg) contents and the total element:N ratio and it increased phenol, lignin, tannin, carbon (C), nitrogen (N) contents and C:N, C:P and N:P ratios. On the other hand, the tissue composition of the fructan accumulating grasses was not affected at this level, in line with recent views that fructans contribute to cellular homeostasis under stress. It is speculated that quality losses will be less prominent in grasses (fructan accumulators) than legumes under climate extreme and its combination with elevated CO2 conditions.


Functional Ecology | 2016

Experimental evidence that oxidative stress influences reproductive decisions

David Costantini; Giulia Casasole; Hamada AbdElgawad; Han Asard; Marcel Eens

Summary There is considerable interest of evolutionary ecologists in the proximate mechanisms that constrain life-history variation. It is increasingly recognized that oxidative stress may be a prime physiological constraint on reproduction, but to the best of our knowledge, this has never been tested experimentally. To fill in this gap, we examined whether a specific and short-term experimental increase of pre-reproductive oxidative stress in females of a songbird (canary, Serinus canaria) would influence reproductive decisions (i.e. when and how many eggs to lay), and reproductive success (hatching and fledging success, number of hatchlings and of fledglings produced by each female), as compared to females whose oxidative stress levels were not manipulated. Our experimental reduction of glutathione, a key antioxidant, increased oxidative stress and affected reproductive decisions: treated females significantly delayed the start of egg laying and laid significantly smaller clutches. However, both hatching and fledging success and the number of hatchlings and of fledglings produced by each female were similar between control and treated females. Our results support the hypothesis that oxidative stress may be one proximate mechanism modulating key life-history traits (such as the timing of laying and clutch size in birds) and therefore may act as a link between prevailing environmental conditions and fitness traits.

Collaboration


Dive into the Hamada AbdElgawad's collaboration.

Top Co-Authors

Avatar

Han Asard

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Nijs

University of Antwerp

View shared research outputs
Researchain Logo
Decentralizing Knowledge