Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gaurav Zinta is active.

Publication


Featured researches published by Gaurav Zinta.


Frontiers in Plant Science | 2016

High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs

Hamada AbdElgawad; Gaurav Zinta; Momtaz M. Hegab; Renu Pandey; Han Asard; Walid Abuelsoud

Salinity negatively affects plant growth and causes significant crop yield losses world-wide. Maize is an economically important cereal crop affected by high salinity. In this study, maize seedlings were subjected to 75 mM and 150 mM NaCl, to emulate high soil salinity. Roots, mature leaves (basal leaf-pair 1,2) and young leaves (distal leaf-pair 3,4) were harvested after 3 weeks of sowing. Roots showed the highest reduction in biomass, followed by mature and young leaves in the salt-stressed plants. Concomitant with the pattern of growth reduction, roots accumulated the highest levels of Na+ followed by mature and young leaves. High salinity induced oxidative stress in the roots and mature leaves, but to a lesser extent in younger leaves. The younger leaves showed increased electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) concentrations only at 150 mM NaCl. Total antioxidant capacity (TAC) and polyphenol content increased with the increase in salinity levels in roots and mature leaves, but showed no changes in the young leaves. Under salinity stress, reduced ascorbate (ASC) and glutathione (GSH) content increased in roots, while total tocopherol levels increased specifically in the shoot tissues. Similarly, redox changes estimated by the ratio of redox couples (ASC/total ascorbate and GSH/total glutathione) showed significant decreases in the roots. Activities of enzymatic antioxidants, catalase (CAT, EC 1.11.1.6) and dehydroascorbate reductase (DHAR, EC 1.8.5.1), increased in all organs of salt-treated plants, while superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione-s-transferase (GST, EC 2.5.1.18) and glutathione reductase (GR, EC 1.6.4.2) increased specifically in the roots. Overall, these results suggest that Na+ is retained and detoxified mainly in roots, and less stress impact is observed in mature and younger leaves. This study also indicates a possible role of ROS in the systemic signaling from roots to leaves, allowing leaves to activate their defense mechanisms for better protection against salt stress.


Global Change Biology | 2014

Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels

Gaurav Zinta; Hamada AbdElgawad; Malgorzata A. Domagalska; Lucia Vergauwen; Dries Knapen; Ivan Nijs; Ivan A. Janssens; Gerrit T.S. Beemster; Han Asard

Climate changes increasingly threaten plant growth and productivity. Such changes are complex and involve multiple environmental factors, including rising CO2 levels and climate extreme events. As the molecular and physiological mechanisms underlying plant responses to realistic future climate extreme conditions are still poorly understood, a multiple organizational level analysis (i.e. eco-physiological, biochemical, and transcriptional) was performed, using Arabidopsis exposed to incremental heat wave and water deficit under ambient and elevated CO2 . The climate extreme resulted in biomass reduction, photosynthesis inhibition, and considerable increases in stress parameters. Photosynthesis was a major target as demonstrated at the physiological and transcriptional levels. In contrast, the climate extreme treatment induced a protective effect on oxidative membrane damage, most likely as a result of strongly increased lipophilic antioxidants and membrane-protecting enzymes. Elevated CO2 significantly mitigated the negative impact of a combined heat and drought, as apparent in biomass reduction, photosynthesis inhibition, chlorophyll fluorescence decline, H2 O2 production, and protein oxidation. Analysis of enzymatic and molecular antioxidants revealed that the stress-mitigating CO2 effect operates through up-regulation of antioxidant defense metabolism, as well as by reduced photorespiration resulting in lowered oxidative pressure. Therefore, exposure to future climate extreme episodes will negatively impact plant growth and production, but elevated CO2 is likely to mitigate this effect.


PLOS ONE | 2014

Anti-Oxidative Defences Are Modulated Differentially in Three Freshwater Teleosts in Response to Ammonia-Induced Oxidative Stress

Amit Kumar Sinha; Hamada AbdElgawad; Terri Giblen; Gaurav Zinta; Michelle De Rop; Han Asard; Ronny Blust; Gudrun De Boeck

Oxidative stress and the antioxidant response induced by high environmental ammonia (HEA) were investigated in the liver and gills of three freshwater teleosts differing in their sensitivities to ammonia. The highly ammonia-sensitive salmonid Oncorhynchus mykiss (rainbow trout), the less ammonia sensitive cyprinid Cyprinus carpio (common carp) and the highly ammonia-resistant cyprinid Carassius auratus (goldfish) were exposed to 1 mM ammonia (as NH4HCO3) for 0 h (control), 3 h, 12 h, 24 h, 48 h, 84 h and 180 h. Results show that HEA exposure increased ammonia accumulation significantly in the liver of all the three fish species from 24 h–48 h onwards which was associated with an increment in oxidative stress, evidenced by elevation of xanthine oxidase activity and levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Unlike in trout, H2O2 and MDA accumulation in carp and goldfish liver was restored to control levels (84 h–180 h); which was accompanied by a concomitant increase in superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase activity and reduced ascorbate content. Many of these defence parameters remained unaffected in trout liver, while components of the glutathione redox cycle (reduced glutathione, glutathione peroxidase and glutathione reductase) enhanced to a greater extent. The present findings suggest that trout rely mainly on glutathione dependent defensive mechanism while carp utilize SOD, CAT and ascorbate as anti-oxidative sentinels. Hepatic cells of goldfish appear to utilize each of these protective systems, and showed more effective anti-oxidative compensatory responses towards HEA than carp, while trout were least effective. The present work also indicates that HEA exposure resulted in a relatively mild oxidative stress in the gills of all three species. This probably explains the almost complete lack of anti-oxidative responses in branchial tissue. This research suggests that oxidative stress, as well as the antioxidant potential clearly differ between salmonid and cyprinid species.


Molecules | 2015

Metabolic analysis of various date palm fruit (Phoenix dactylifera L.) cultivars from Saudi Arabia to assess their nutritional quality

Ismail Hamad; Hamada AbdElgawad; Soad Al Jaouni; Gaurav Zinta; Han Asard; Sherif T. S. Hassan; Momtaz M. Hegab; Nashwa Hagagy; Samy Selim; Saudi Arabia

Date palm is an important crop, especially in the hot-arid regions of the world. Date palm fruits have high nutritional and therapeutic value and possess significant antibacterial and antifungal properties. In this study, we performed bioactivity analyses and metabolic profiling of date fruits of 12 cultivars from Saudi Arabia to assess their nutritional value. Our results showed that the date extracts from different cultivars have different free radical scavenging and anti-lipid peroxidation activities. Moreover, the cultivars showed significant differences in their chemical composition, e.g., the phenolic content (10.4–22.1 mg/100 g DW), amino acids (37–108 μmol·g−1 FW) and minerals (237–969 mg/100 g DW). Principal component analysis (PCA) showed a clear separation of the cultivars into four different groups. The first group consisted of the Sokary, Nabtit Ali cultivars, the second group of Khlas Al Kharj, Khla Al Qassim, Mabroom, Khlas Al Ahsa, the third group of Khals Elshiokh, Nabot Saif, Khodry, and the fourth group consisted of Ajwa Al Madinah, Saffawy, Rashodia, cultivars. Hierarchical cluster analysis (HCA) revealed clustering of date cultivars into two groups. The first cluster consisted of the Sokary, Rashodia and Nabtit Ali cultivars, and the second cluster contained all the other tested cultivars. These results indicate that date fruits have high nutritive value, and different cultivars have different chemical composition.


PLOS ONE | 2014

Climate extreme effects on the chemical composition of temperate grassland species under ambient and elevated CO2: a comparison of fructan and non-fructan accumulators.

Hamada AbdElgawad; Darin Peshev; Gaurav Zinta; Wim Van den Ende; Ivan A. Janssens; Han Asard

Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N) fixing legumes Medicago lupulina and Lotus corniculatus were subjected to water deficit at elevated temperature (+3°C), under ambient CO2 (392 ppm) and elevated CO2 (620 ppm). As a general observation, the effects of the climate extreme were larger and more ubiquitous in combination with elevated CO2. The imposed climate extreme increased non-structural carbohydrate and phenolics in all species, whereas it increased lignin in legumes and decreased tannins in grasses. However, there was no significant effect of climate extreme on structural carbohydrates, proteins, lipids and mineral contents and stoichiometric ratios. In combination with elevated CO2, climate extreme elicited larger increases in fructan and sucrose content in the grasses without affecting the total carbohydrate content, while it significantly increased total carbohydrates in legumes. The accumulation of carbohydrates in legumes was accompanied by higher activity of sucrose phosphate synthase, sucrose synthase and ADP-Glc pyrophosphorylase. In the legumes, elevated CO2 in combination with climate extreme reduced protein, phosphorus (P) and magnesium (Mg) contents and the total element:N ratio and it increased phenol, lignin, tannin, carbon (C), nitrogen (N) contents and C:N, C:P and N:P ratios. On the other hand, the tissue composition of the fructan accumulating grasses was not affected at this level, in line with recent views that fructans contribute to cellular homeostasis under stress. It is speculated that quality losses will be less prominent in grasses (fructan accumulators) than legumes under climate extreme and its combination with elevated CO2 conditions.


Biotechnology Advances | 2015

Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress

Renu Pandey; Gaurav Zinta; Hamada AbdElgawad; Altaf Ahmad; Vanita Jain; Ivan A. Janssens

Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P-limitation responses in plants. Analysis of expression patterns of some typical P-limitation induced genes under high [CO2] suggests that long-term exposure of plants to high [CO2] would have a tendency to stimulate similar transcriptional responses as observed under P-limitation. However, studies on the combined effect of high [CO2] and low P on gene expression are scarce. Such studies would provide insights into the development of P efficient crops in the context of anticipated increases in atmospheric [CO2].


New Phytologist | 2015

Grassland species differentially regulate proline concentrations under future climate conditions: an integrated biochemical and modelling approach.

Hamada AbdElgawad; Dirk De Vos; Gaurav Zinta; Malgorzata A. Domagalska; Gerrit T.S. Beemster; Han Asard

Summary Proline (Pro) is a versatile metabolite playing a role in the protection of plants against environmental stresses. To gain a deeper understanding of the regulation of Pro metabolism under predicted future climate conditions, including drought stress, elevated temperature and CO 2, we combined measurements in contrasting grassland species (two grasses and two legumes) at multiple organisational levels, that is, metabolite concentrations, enzyme activities and gene expression. Drought stress (D) activates Pro biosynthesis and represses its catabolism, and elevated temperature (DT) further elevated its content. Elevated CO 2 attenuated the DT effect on Pro accumulation. Computational pathway control analysis allowed a mechanistic understanding of the regulatory changes in Pro metabolism. This analysis indicates that the experimentally observed coregulation of multiple enzymes is more effective in modulating Pro concentrations than regulation of a single step. Pyrroline‐5‐carboxylate synthetase (P5CS) and pyrroline‐5‐carboxylate reductase (P5CR) play a central role in grasses (Lolium perenne, Poa pratensis), and arginase (ARG), ornithine aminotransferase (OAT) and P5CR play a central role in legumes (Medicago lupulina, Lotus corniculatus). Different strategies in the regulation of Pro concentrations under stress conditions were observed. In grasses the glutamate pathway is activated predominantly, and in the legumes the ornithine pathway, possibly related to differences in N‐nutritional status.


Plant Physiology and Biochemistry | 2013

Ability of ellagic acid to alleviate osmotic stress on chickpea seedlings.

Walid Abu El-Soud; Momtaz M. Hegab; Hamada AbdElgawad; Gaurav Zinta; Han Asard

Seed germination and growth of seedlings are critical phases of plant life that are adversely affected by various environmental cues. Water availability is one of the main factors that limit the productivity of many crops. This study was conducted to assess the changes in the sensitivity of chickpea seedlings to osmotic stress by prior treatment of chickpea seeds with a low concentration (50 ppm) of ellagic acid. Ellagic acid was isolated and purified from Padina boryana Thivy by chromatographic techniques. After ellagic acid treatment, seeds were germinated for 10 days under different osmotic potentials (0, -0.2, -0.4, -0.6 and -0.8 MPa) of polyethylene glycol (PEG) solutions. Ellagic acid treatment accelerated the germination and seedling growth of chickpea under osmotic stress conditions. Consistent with the accelerated growth, ellagic acid-treated seedlings also showed a significant increase in the total antioxidant capacity (FRAP) as well as an increase in the compatible solutes (proline and glycine betaine) content. Additionally, treated seedlings revealed lower lipid peroxidation levels (MDA), electrolyte leakage (EL) and H2O2. Flavonoid and reduced glutathione (GSH) content, and the activity of antioxidant enzymes [catalase (CAT), peroxidase (POX), superoxide dismutase (SOD), glutathione reductase (GR)] and enzymes of the shikimic acid pathway [phenylalanine ammonia lyase (PAL) and chalcone synthase (CHS)] all showed a remarkable increase with ellagic acid pretreatment compared to untreated seedlings especially under mild osmotic stress values (-0.2 and -0.4 MPa). These results suggested that treatment with ellagic acid could confer an increased tolerance of chickpea seedlings to osmotic stress, through reducing levels of H2O2 and increasing antioxidant capacity.


Frontiers in Plant Science | 2016

Future Climate CO2 Levels Mitigate Stress Impact on Plants: Increased Defense or Decreased Challenge?

Hamada AbdElgawad; Gaurav Zinta; Gerrit T.S. Beemster; Ivan A. Janssens; Han Asard

Elevated atmospheric CO2 can stimulate plant growth by providing additional C (fertilization effect), and is observed to mitigate abiotic stress impact. Although, the mechanisms underlying the stress mitigating effect are not yet clear, increased antioxidant defenses, have been held primarily responsible (antioxidant hypothesis). A systematic literature analysis, including “all” papers [Web of Science (WoS)-cited], addressing elevated CO2 effects on abiotic stress responses and antioxidants (105 papers), confirms the frequent occurrence of the stress mitigation effect. However, it also demonstrates that, in stress conditions, elevated CO2 is reported to increase antioxidants, only in about 22% of the observations (e.g., for polyphenols, peroxidases, superoxide dismutase, monodehydroascorbate reductase). In most observations, under stress and elevated CO2 the levels of key antioxidants and antioxidant enzymes are reported to remain unchanged (50%, e.g., ascorbate peroxidase, catalase, ascorbate), or even decreased (28%, e.g., glutathione peroxidase). Moreover, increases in antioxidants are not specific for a species group, growth facility, or stress type. It seems therefore unlikely that increased antioxidant defense is the major mechanism underlying CO2-mediated stress impact mitigation. Alternative processes, probably decreasing the oxidative challenge by reducing ROS production (e.g., photorespiration), are therefore likely to play important roles in elevated CO2 (relaxation hypothesis). Such parameters are however rarely investigated in connection with abiotic stress relief. Understanding the effect of elevated CO2 on plant growth and stress responses is imperative to understand the impact of climate changes on plant productivity.


Ecotoxicology and Environmental Safety | 2017

Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus

Seham M. Hamed; Gaurav Zinta; Gerd Klöck; Han Asard; Samy Selim; Hamada AbdElgawad

Algae are frequently exposed to toxic metals, and zinc (Zn) is one of the major toxicants present. We exposed two green microalgae, Chlorella sorokiniana and Scenedesmus acuminatus, to sub-lethal concentrations (1.0 and 0.6mM) of Zn for seven days. Algal responses were analysed at the level of growth, oxidative stress, and antioxidants. Growth parameters such as cell culture yield and pigment content were less affected by Zn in C. sorokiniana, despite the fact that this alga accumulated more zinc than S. acuminatus. Also, C. sorokiniana, but not S. acuminatus, was able to acclimatize during long-term exposure to toxic concentrations of the test metals (specific growth rate (µ) was 0.041/day and total chlorophyll was 14.6mg/mL). Although, Zn induced oxidative stress in both species, C. sorokiniana experienced less stress than S. acuminatus. This could be explained by a higher accumulation of antioxidants in C. sorokiniana, where flavonoids, polyphenols, tocopherols, glutathione (GSH) and ascorbate (ASC) content increased. Moreover, antioxidant enzymes glutathione S transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), showed increased activities in C. sorokiniana. In addition to, and probably also underlying, the higher Zn tolerance in C. sorokiniana, this alga also showed higher Zn biosorption capacity. Use of C. sorokiniana as a bio-remediator, could be considered.

Collaboration


Dive into the Gaurav Zinta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Han Asard

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renu Pandey

Indian Agricultural Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Nijs

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge