Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Han Asard is active.

Publication


Featured researches published by Han Asard.


Trends in Plant Science | 2000

Transport and action of ascorbate at the plant plasma membrane

Nele Horemans; Christine H. Foyer; Han Asard

The plasmalemma is both a bridge and a barrier between the cytoplasm and the outside world. It is a dynamic interface that perceives and transmits information concerning changes in the environment to the nucleus to modify gene expression. In plants, ascorbate is an essential part of this dialogue. The concentration and ratio of reduced to oxidized ascorbate in the apoplast, for example, possibly modulates cell division and growth. The leaf apoplast contains millimolar amounts of ascorbate that protect the plasmalemma against oxidative damage. The apoplastic ascorbate-dehydroascorbate redox couple is linked to the cytoplasmic ascorbate-dehydroascorbate redox couple by specific transporters for either or both metabolites. Although evidence about the mechanisms driving ascorbate or dehydroascorbate transport remains inconclusive, these carrier proteins potentially regulate the level and redox status of ascorbate in the apoplast. The redox coupling between compartments facilitated by these transport systems allows coordinated control of key physiological responses to environmental cues.


Plant Physiology and Biochemistry | 2002

Ascorbate and glutathione: guardians of the cell cycle, partners in crime?

Geert Potters; Laura De Gara; Han Asard; Nele Horemans

Abstract Besides the implication of ascorbate and glutathione in the defence against oxidative stress, these two compounds are involved in plant growth and cell cycle control. Ascorbate metabolism is closely linked to the development of embryos and seedlings. Furthermore, ascorbate stimulates cell cycle activity in competent cells, while the oxidised form, dehydroascorbate, blocks normal cell cycle progression. Several possible mechanisms have been proposed to explain the effect of these compounds. The links between glutathione and the cell cycle are less clear. It has long been assumed that both compounds are closely linked by way of the Halliwell–Asada cycle. Any hypothesis concerning the pathways by which ascorbate or glutathione influence cell division, should take this connection into account. However, other mechanisms have been proposed for ascorbate-mediated cell cycle control, e.g. via the thioredoxin pathway.


Plant Physiology and Biochemistry | 2000

Ascorbate function and associated transport systems in plants

Nele Horemans; Christine H. Foyer; Geert Potters; Han Asard

Abstract Ascorbate is present in different cell compartments of higher plant cells. At a physiological level, the best-studied phenomena involving ascorbate is its participation in an oxygen scavenging pathway in the chloroplast known as the ascorbate-glutathione cycle. In addition, evidence is emerging that ascorbate fulfils essential roles in growth, development and defence outside the chloroplast. Despite its importance in plant biology, the pathway of ascorbate biosynthesis has only recently been elucidated. From the site of synthesis in the mitochondria, ascorbate must be transported to other cellular compartments where it accumulates to high concentrations. Translocation of ascorbate through the plasmalemma and chloroplast membrane is mediated by specific carriers. Initial observations indicate that carriers for both ascorbate and its oxidised form dehydroascorbate are present in plant membranes. Regulation of ascorbate transport systems may be central in the regulation of different physiological processes including progression through the cell cycle, expansion of the cell wall and defence against abiotic and biotic threats.


Plant Physiology | 2004

Dehydroascorbate Influences the Plant Cell Cycle through a Glutathione-Independent Reduction Mechanism

Geert Potters; Nele Horemans; Silvia Bellone; Roland J. Caubergs; Paolo Trost; Yves Guisez; Han Asard

Glutathione is generally accepted as the principal electron donor for dehydroascorbate (DHA) reduction. Moreover, both glutathione and DHA affect cell cycle progression in plant cells. But other mechanisms for DHA reduction have been proposed. To investigate the connection between DHA and glutathione, we have evaluated cellular ascorbate and glutathione concentrations and their redox status after addition of dehydroascorbate to medium of tobacco (Nicotiana tabacum) L. cv Bright Yellow-2 (BY-2) cells. Addition of 1 mm DHA did not change the endogenous glutathione concentration. Total glutathione depletion of BY-2 cells was achieved after 24-h incubation with 1 mm of the glutathione biosynthesis inhibitor l-buthionine sulfoximine. Even in these cells devoid of glutathione, complete uptake and internal reduction of 1 mm DHA was observed within 6 h, although the initial reduction rate was slower. Addition of DHA to a synchronized BY-2 culture, or depleting its glutathione content, had a synergistic effect on cell cycle progression. Moreover, increased intracellular glutathione concentrations did not prevent exogenous DHA from inducing a cell cycle shift. It is therefore concluded that, together with a glutathione-driven DHA reduction, a glutathione-independent pathway for DHA reduction exists in vivo, and that both compounds act independently in growth control.


Plant Physiology | 1997

Solubilization and Separation of a Plant Plasma Membrane NADPH-O2- Synthase from Other NAD(P)H Oxidoreductases.

P. Van Gestelen; Han Asard; Roland J. Caubergs

Solubilization and ion-exchange chromatography of plasma membrane proteins obtained from bean (Phaseolus vulgaris L.) seedlings resulted in a single NAD(P)H-O2--synthase protein peak. This enzyme showed a high preference toward NADPH as a substrate (reaction rate, 27.4 nmol O2- produced min-1 mg-1 protein), whereas NADH reactions ranged from 0 to maximally 15% of the NADPH reactions. The protein functions as an oxidase and it was clearly resolved from NAD(P)H dehydrogenases identified with commonly used strong oxidants (ferricyanide, cytochrome c, DCIP, and oxaloacetate). The involvement of peroxidases in O2- production is excluded on the basis of potassium-cyanide insensitivity and NADPH specificity. The NADPH oxidase is only moderately stimulated by flavins (1.5-fold with 25 [mu]M flavine adenine dinucleotide and 2.5-fold with 25 [mu]M flavin mononucleotide) and inhibited by 100 [mu]M p-chloromercuribenzenesulfonic acid, 200 [mu]M diphenyleneiodonium, 10 mM quinacrine, 40 mM pyridine, and 20 mM imidazole. The presence of flavins was demonstrated in the O2-synthase fraction, but no b-type cytochromes were detected. The effect of these inhibitors and the detection of flavins and cytochromes in the plant O2- synthase make it possible to compare this enzyme with the NADPH O2- synthase of animal neutrophil cells.


Plant Physiology | 2004

Tomato Phospholipid Hydroperoxide Glutathione Peroxidase Inhibits Cell Death Induced by Bax and Oxidative Stresses in Yeast and Plants

Shaorong Chen; Zarir Vaghchhipawala; Wei Li; Han Asard; Martin B. Dickman

Using a conditional life or death screen in yeast, we have isolated a tomato (Lycopersicon esculentum) gene encoding a phospholipid hydroperoxide glutathione peroxidase (LePHGPx). The protein displayed reduced glutathione-dependent phospholipid hydroperoxide peroxidase activity, but differs from counterpart mammalian enzymes that instead contain an active seleno-Cys. LePHGPx functioned as a cytoprotector in yeast (Saccharomyces cerevisiae), preventing Bax, hydrogen peroxide, and heat stress induced cell death, while also delaying yeast senescence. When tobacco (Nicotiana tabacum) leaves were exposed to lethal levels of salt and heat stress, features associated with mammalian apoptosis were observed. Importantly, transient expression of LePHGPx protected tobacco leaves from salt and heat stress and suppressed the apoptotic-like features. As has been reported, conditional expression of Bax was lethal in tobacco, resulting in tissue collapse and membrane permeability to Evans blue. When LePHGPx was coexpressed with Bax, little cell death and no vital staining were observed. Moreover, stable expression of LePHGPx in tobacco conferred protection against the fungal phytopathogen Botrytis cinerea. Taken together, our data indicated that LePHGPx can protect plant tissue from a variety of stresses. Moreover, functional screens in yeast are a viable tool for the identification of plant genes that regulate cell death.


Plant Physiology | 1994

The Role of Ascorbate Free Radical as an Electron Acceptor to Cytochrome b-Mediated Trans-Plasma Membrane Electron Transport in Higher Plants.

Nele Horemans; Han Asard; Roland J. Caubergs

The action of ascorbate free radical as an electron acceptor to cytochrome b-mediated trans-plasma membrane electron transport is demonstrated. Addition of ascorbate free radical to ascorbate-loaded plasma membrane vesicles caused a rapid oxidation of the cytochrome, followed by a slower re-reduction. The fully reduced dehydroascorbate was ineffective.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species

Yongshuo H. Fu; Matteo Campioli; Yann Vitasse; Hans J. De Boeck; Joke Van den Berge; Hamada AbdElgawad; Han Asard; Shilong Piao; Gaby Deckmyn; Ivan A. Janssens

Significance Leaf phenology of temperate ecosystems is shifting in response to global warming. This affects surface albedo, ecosystem carbon balance, and evapotranspiration, and the response of leaf phenology to climatic drivers has therefore received particular interest. However, despite considerable effort, models have failed to accurately reproduce phenology patterns, likely because mechanistic understanding is incomplete. Here, we show that earlier leaf flushing in response to a warm winter translated into earlier leaf senescence and even earlier leaf flushing in the following year. This legacy effect of winter warming on leaf phenology has important implications for understanding and modelling leaf phenology and its impact on ecosystem functioning, especially in relation to global warming, and is likely to open new research lines. Recent temperature increases have elicited strong phenological shifts in temperate tree species, with subsequent effects on photosynthesis. Here, we assess the impact of advanced leaf flushing in a winter warming experiment on the current year’s senescence and next year’s leaf flushing dates in two common tree species: Quercus robur L. and Fagus sylvatica L. Results suggest that earlier leaf flushing translated into earlier senescence, thereby partially offsetting the lengthening of the growing season. Moreover, saplings that were warmed in winter–spring 2009–2010 still exhibited earlier leaf flushing in 2011, even though the saplings had been exposed to similar ambient conditions for almost 1 y. Interestingly, for both species similar trends were found in mature trees using a long-term series of phenological records gathered from various locations in Europe. We hypothesize that this long-term legacy effect is related to an advancement of the endormancy phase (chilling phase) in response to the earlier autumnal senescence. Given the importance of phenology in plant and ecosystem functioning, and the prediction of more frequent extremely warm winters, our observations and postulated underlying mechanisms should be tested in other species.


Plant Physiology | 1997

The Ascorbate Carrier of Higher Plant Plasma Membranes Preferentially Translocates the Fully Oxidized (Dehydroascorbate) Molecule.

Nele Horemans; Han Asard; Roland J. Caubergs

Recently, the uptake of 14C-labeled ascorbate (ASC) into highly purified bean (Phaseolus vulgaris L.) plasma membrane vesicles was demonstrated in our laboratory. However, the question of the redox status of the transported molecule (ASC or dehydroascorbate [DHA]) remained unanswered. In this paper we present evidence that DHA is transported through the plasma membrane. High-performance liquid chromatography analysis of the redox status of ASC demonstrated that freshly purified plasma membranes exhibit a high ASC oxidation activity. Although it is not yet clear whether this activity is enzymatic, it complicates the interpretation of ASC-transport experiments in vitro and in vivo. In an attempt to correlate the ASC redox status to transport of the molecule, the ability of different compounds to reduce DHA was analyzed and their effect on ASC-transport activity tested. Administering of various reductants resulted in different levels of inhibition of ASC uptake (dithiothreitol > dithioerythritol > [beta]-mercaptoethanol > [beta]-mercaptopropanol). Glutathione, cysteine, dithionite, and thiourea did not significantly affect ASC transport. Statistical analysis indicated a strong correlation of the Spearman rank correlation coefficient (Rs) of 0.919 (P = 0.0005, n = 9) between the level of ASC oxidation and the amount of transported molecules into the vesicles. The administering of ASC oxidants such as ferricyanide and ASC oxidase resulted in a stimulated ASC uptake into the plasma membrane vesicles. Together, our results demonstrate that a vitamin C carrier in purified bean plasma membranes translocates DHA from the apoplast to the cytosol.


FEBS Letters | 1992

Transmembrane electron transport in ascorbate-loaded plasma membrane vesicles from higher plants involves a b-type cytochrome.

Han Asard; Nele Horemans; Roland J. Caubergs

The possible involvement of a high‐potential b‐type cytochrome in plasma membrane electron transport was tested using ascorbate‐loaded membrane vesicles. Absorption spectra demonstrated that the cytochrome was about 89% reduced in these preparations. Use of ascorbate oxidase and washing of the vesicles further indicated flat reduction was mediated by intra‐vesicular ascorbate. Addition of low concentrations of ferricyanide caused a rapid cytochrome oxidation followed by a slower re‐reduction. The Kinetics of this response indicate that the electron acceptor was fully reduced berore re‐reduction of the cytochrome occurred. These observations suggest that the b‐type cytochrome mediates transmembrane electron transfer.

Collaboration


Dive into the Han Asard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alajos Bérczi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge