Hamid Nikbakht
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hamid Nikbakht.
Nature Genetics | 2014
Adam M. Fontebasso; Simon Papillon-Cavanagh; Jeremy Schwartzentruber; Hamid Nikbakht; Noha Gerges; Pierre‑Olivier Fiset; Denise Bechet; Damien Faury; Nicolas De Jay; Lori A. Ramkissoon; Aoife Corcoran; David T. W. Jones; Dominik Sturm; Pascal Johann; Tadanori Tomita; Stewart Goldman; Mahmoud Nagib; Liliana Goumnerova; Daniel C. Bowers; Jeffrey R. Leonard; Joshua B. Rubin; Tord D. Alden; Samuel R. Browd; J. Russell Geyer; Sarah Leary; George I. Jallo; Kenneth Cohen; Nalin Gupta; Michael D. Prados; Anne Sophie Carret
Pediatric midline high-grade astrocytomas (mHGAs) are incurable with few treatment targets identified. Most tumors harbor mutations encoding p.Lys27Met in histone H3 variants. In 40 treatment-naive mHGAs, 39 analyzed by whole-exome sequencing, we find additional somatic mutations specific to tumor location. Gain-of-function mutations in ACVR1 occur in tumors of the pons in conjunction with histone H3.1 p.Lys27Met substitution, whereas FGFR1 mutations or fusions occur in thalamic tumors associated with histone H3.3 p.Lys27Met substitution. Hyperactivation of the bone morphogenetic protein (BMP)-ACVR1 developmental pathway in mHGAs harboring ACVR1 mutations led to increased levels of phosphorylated SMAD1, SMAD5 and SMAD8 and upregulation of BMP downstream early-response genes in tumor cells. Global DNA methylation profiles were significantly associated with the p.Lys27Met alteration, regardless of the mutant histone H3 variant and irrespective of tumor location, supporting the role of this substitution in driving the epigenetic phenotype. This work considerably expands the number of potential treatment targets and further justifies pretreatment biopsy in pediatric mHGA as a means to orient therapeutic efforts in this disease.
EMBO Reports | 2014
Kristopher T. Kahle; Nancy D. Merner; Perrine Friedel; Liliya Silayeva; Bo Liang; Arjun Khanna; Yuze Shang; Pamela Lachance-Touchette; Cynthia V. Bourassa; Annie Levert; Patrick A. Dion; Brian P. Walcott; Dan Spiegelman; Alexandre Dionne-Laporte; Alan Hodgkinson; Hamid Nikbakht; Jacek Majewski; Patrick Cossette; Tarek Z. Deeb; Stephen J. Moss; Igor Medina; Guy A. Rouleau
The KCC2 cotransporter establishes the low neuronal Cl− levels required for GABAA and glycine (Gly) receptor‐mediated inhibition, and KCC2 deficiency in model organisms results in network hyperexcitability. However, no mutations in KCC2 have been documented in human disease. Here, we report two non‐synonymous functional variants in human KCC2, R952H and R1049C, exhibiting clear statistical association with idiopathic generalized epilepsy (IGE). These variants reside in conserved residues in the KCC2 cytoplasmic C‐terminus, exhibit significantly impaired Cl−‐extrusion capacities resulting in less hyperpolarized Gly equilibrium potentials (EGly), and impair KCC2 stimulatory phosphorylation at serine 940, a key regulatory site. These data describe a novel KCC2 variant significantly associated with a human disease and suggest genetically encoded impairment of KCC2 functional regulation may be a risk factor for the development of human IGE.
Nature Communications | 2016
Hamid Nikbakht; Eshini Panditharatna; Leonie G. Mikael; Rui Li; Tenzin Gayden; Matthew Osmond; Cheng-Ying Ho; Madhuri Kambhampati; Eugene I. Hwang; Damien Faury; Alan Siu; Simon Papillon-Cavanagh; Denise Bechet; Keith L. Ligon; Benjamin Ellezam; Wendy J. Ingram; Caedyn Stinson; Andrew S. Moore; Katherine E. Warren; Jason Karamchandani; Roger J. Packer; Nada Jabado; Jacek Majewski; Javad Nazarian
Diffuse Intrinsic Pontine Gliomas (DIPGs) are deadly paediatric brain tumours where needle biopsies help guide diagnosis and targeted therapies. To address spatial heterogeneity, here we analyse 134 specimens from various neuroanatomical structures of whole autopsy brains from nine DIPG patients. Evolutionary reconstruction indicates histone 3 (H3) K27M—including H3.2K27M—mutations potentially arise first and are invariably associated with specific, high-fidelity obligate partners throughout the tumour and its spread, from diagnosis to end-stage disease, suggesting mutual need for tumorigenesis. These H3K27M ubiquitously-associated mutations involve alterations in TP53 cell-cycle (TP53/PPM1D) or specific growth factor pathways (ACVR1/PIK3R1). Later oncogenic alterations arise in sub-clones and often affect the PI3K pathway. Our findings are consistent with early tumour spread outside the brainstem including the cerebrum. The spatial and temporal homogeneity of main driver mutations in DIPG implies they will be captured by limited biopsies and emphasizes the need to develop therapies specifically targeting obligate oncohistone partnerships.
Cancer Cell | 2017
Alan Mackay; Anna Burford; Diana Carvalho; Elisa Izquierdo; Janat Fazal-Salom; Kathryn R. Taylor; Lynn Bjerke; Matthew Clarke; Mara Vinci; Meera Nandhabalan; Sara Temelso; Sergey Popov; Valeria Molinari; Pichai Raman; Angela J. Waanders; Harry J. Han; Saumya Gupta; Lynley V. Marshall; Stergios Zacharoulis; Sucheta Vaidya; Henry Mandeville; Leslie R. Bridges; Andrew J. Martin; Safa Al-Sarraj; Christopher Chandler; Ho Keung Ng; Xingang Li; Kun Mu; Saoussen Trabelsi; Dorra H’mida-Ben Brahim
Summary We collated data from 157 unpublished cases of pediatric high-grade glioma and diffuse intrinsic pontine glioma and 20 publicly available datasets in an integrated analysis of >1,000 cases. We identified co-segregating mutations in histone-mutant subgroups including loss of FBXW7 in H3.3G34R/V, TOP3A rearrangements in H3.3K27M, and BCOR mutations in H3.1K27M. Histone wild-type subgroups are refined by the presence of key oncogenic events or methylation profiles more closely resembling lower-grade tumors. Genomic aberrations increase with age, highlighting the infant population as biologically and clinically distinct. Uncommon pathway dysregulation is seen in small subsets of tumors, further defining the molecular diversity of the disease, opening up avenues for biological study and providing a basis for functionally defined future treatment stratification.
Nature Genetics | 2017
A. Sorana Morrissy; Florence M.G. Cavalli; Marc Remke; Vijay Ramaswamy; David Shih; Borja L. Holgado; Hamza Farooq; Laura K. Donovan; Livia Garzia; Sameer Agnihotri; Erin Kiehna; Eloi Mercier; Chelsea Mayoh; Simon Papillon-Cavanagh; Hamid Nikbakht; Tenzin Gayden; Jonathon Torchia; Daniel Picard; Diana Merino; Maria Vladoiu; Betty Luu; Xiaochong Wu; Craig Daniels; Stuart Horswell; Yuan Yao Thompson; Volker Hovestadt; Paul A. Northcott; David T. W. Jones; John Peacock; Xin Wang
Spatial heterogeneity of transcriptional and genetic markers between physically isolated biopsies of a single tumor poses major barriers to the identification of biomarkers and the development of targeted therapies that will be effective against the entire tumor. We analyzed the spatial heterogeneity of multiregional biopsies from 35 patients, using a combination of transcriptomic and genomic profiles. Medulloblastomas (MBs), but not high-grade gliomas (HGGs), demonstrated spatially homogeneous transcriptomes, which allowed for accurate subgrouping of tumors from a single biopsy. Conversely, somatic mutations that affect genes suitable for targeted therapeutics demonstrated high levels of spatial heterogeneity in MB, malignant glioma, and renal cell carcinoma (RCC). Actionable targets found in a single MB biopsy were seldom clonal across the entire tumor, which brings the efficacy of monotherapies against a single target into question. Clinical trials of targeted therapies for MB should first ensure the spatially ubiquitous nature of the target mutation.
Acta Neuropathologica | 2014
Adam M. Fontebasso; Tenzin Gayden; Hamid Nikbakht; Michael Neirinck; Simon Papillon-Cavanagh; Jacek Majewski; Nada Jabado
A remarkably large number of “epigenetic regulators” have been recently identified to be altered in cancers and a rapidly expanding body of literature points to “epigenetic addiction” (an aberrant epigenetic state to which a tumor is addicted) as a new previously unsuspected mechanism of oncogenesis. Although mutations are also found in canonical signaling pathway genes, we and others identified chromatin-associated proteins to be more commonly altered by somatic alterations than any other class of oncoprotein in several subgroups of childhood high-grade brain tumors. Furthermore, as these childhood malignancies carry fewer non-synonymous somatic mutations per case in contrast to most adult cancers, these mutations are likely drivers in these tumors. Herein, we will use as examples of this novel hallmark of oncogenesis high-grade astrocytomas, including glioblastoma, and a subgroup of embryonal tumors, embryonal tumor with multilayered rosettes (ETMR) to describe the novel molecular defects uncovered in these deadly tumors. We will further discuss evidence for their profound effects on the epigenome. The relative genetic simplicity of these tumors promises general insights into how mutations in the chromatin machinery modify downstream epigenetic signatures to drive transformation, and how to target this plastic genetic/epigenetic interface.
Acta neuropathologica communications | 2017
Ralph Salloum; Melissa K. McConechy; Leonie G. Mikael; Christine Fuller; Mariko DeWire; Hamid Nikbakht; Nicolas De Jay; Xiaodan Yang; Daniel R. Boué; Lionel M.L. Chow; Jonathan L. Finlay; Tenzin Gayden; Jason Karamchandani; Trent R. Hummel; Randal Olshefski; Diana S. Osorio; Charles B. Stevenson; Claudia L. Kleinman; Jacek Majewski; Maryam Fouladi; Nada Jabado
Pediatric high-grade gliomas (pHGGs) are aggressive neoplasms representing approximately 20% of brain tumors in children. Current therapies offer limited disease control, and patients have a poor prognosis. Empiric use of targeted therapy, especially at progression, is increasingly practiced despite a paucity of data regarding temporal and therapy-driven genomic evolution in pHGGs. To study the genetic landscape of pHGGs at recurrence, we performed whole exome and methylation analyses on matched primary and recurrent pHGGs from 16 patients. Tumor mutational profiles identified three distinct subgroups. Group 1 (n = 7) harbored known hotspot mutations in Histone 3 (H3) (K27M or G34V) or IDH1 (H3/IDH1 mutants) and co-occurring TP53 or ACVR1 mutations in tumor pairs across the disease course. Group 2 (n = 7), H3/IDH1 wildtype tumor pairs, harbored novel mutations in chromatin modifiers (ZMYND11, EP300 n = 2), all associated with TP53 alterations, or had BRAF V600E mutations (n = 2) conserved across tumor pairs. Group 3 included 2 tumors with NF1 germline mutations. Pairs from primary and relapsed pHGG samples clustered within the same DNA methylation subgroup. ATRX mutations were clonal and retained in H3G34V and H3/IDH1 wildtype tumors, while different genetic alterations in this gene were observed at diagnosis and recurrence in IDH1 mutant tumors. Mutations in putative drug targets (EGFR, ERBB2, PDGFRA, PI3K) were not always shared between primary and recurrence samples, indicating evolution during progression. Our findings indicate that specific key driver mutations in pHGGs are conserved at recurrence and are prime targets for therapeutic development and clinical trials (e.g. H3 post-translational modifications, IDH1, BRAF V600E). Other actionable mutations are acquired or lost, indicating that re-biopsy at recurrence will provide better guidance for effective targeted therapy of pHGGs.
Nature Genetics | 2018
Tenzin Gayden; Fernando Sepulveda; Dong-Anh Khuong-Quang; Jonathan Pratt; Elvis Terci Valera; Alexandrine Garrigue; Susan Kelso; Frank Sicheri; Leonie G. Mikael; Nancy Hamel; Andrea Bajic; Rola Dali; Shriya Deshmukh; Dzana Dervovic; Daniel Schramek; Frédéric Guerin; Mikko Taipale; Hamid Nikbakht; Jacek Majewski; Despina Moshous; Janie Charlebois; Sharon Abish; Christine Bole-Feysot; Patrick Nitschke; Brigitte Bader-Meunier; David R. Mitchell; Catherine Thieblemont; Maxime Battistella; Simon Gravel; Van-Hung Nguyen
Subcutaneous panniculitis-like T cell lymphoma (SPTCL), a non-Hodgkin lymphoma, can be associated with hemophagocytic lymphohistiocytosis (HLH), a life-threatening immune activation that adversely affects survival1,2. T cell immunoglobulin mucin 3 (TIM-3) is a modulator of immune responses expressed on subgroups of T and innate immune cells. We identify in ~60% of SPTCL cases germline, loss-of-function, missense variants altering highly conserved residues of TIM-3, c.245A>G (p.Tyr82Cys) and c.291A>G (p.Ile97Met), each with specific geographic distribution. The variant encoding p.Tyr82Cys TIM-3 occurs on a potential founder chromosome in patients with East Asian and Polynesian ancestry, while p.Ile97Met TIM-3 occurs in patients with European ancestry. Both variants induce protein misfolding and abrogate TIM-3’s plasma membrane expression, leading to persistent immune activation and increased production of inflammatory cytokines, including tumor necrosis factor-α and interleukin-1β, promoting HLH and SPTCL. Our findings highlight HLH–SPTCL as a new genetic entity and identify mutations causing TIM-3 alterations as a causative genetic defect in SPTCL. While HLH–SPTCL patients with mutant TIM-3 benefit from immunomodulation, therapeutic repression of the TIM-3 checkpoint may have adverse consequences.This study finds germline loss-of-function mutations in HAVCR2, which encodes the immune modulator TIM-3, in individuals with subcutaneous panniculitis-like T cell lymphomas and hemophagocytic lymphohistiocytosis, a life-threatening inflammatory condition.
Nature Communications | 2018
Carolina Cavaliéri Gomes; Tenzin Gayden; Andrea Bajic; Osama F. Harraz; Jonathan Pratt; Hamid Nikbakht; Eric Bareke; Marina Gonçalves Diniz; Wagner Henriques Castro; Pascal St-Onge; Daniel Sinnett; HyeRim Han; Barbara Rivera; Leonie G. Mikael; Nicolas De Jay; Claudia L. Kleinman; Elvis Terci Valera; Angelia V. Bassenden; Albert M. Berghuis; Jacek Majewski; Mark T. Nelson; Ricardo Santiago Gomez; Nada Jabado
Giant cell lesions of the jaw (GCLJ) are debilitating tumors of unknown origin with limited available therapies. Here, we analyze 58 sporadic samples using next generation or targeted sequencing and report somatic, heterozygous, gain-of-function mutations in KRAS, FGFR1, and p.M713V/I-TRPV4 in 72% (42/58) of GCLJ. TRPV4 p.M713V/I mutations are exclusive to central GCLJ and occur at a critical position adjacent to the cation permeable pore of the channel. Expression of TRPV4 mutants in HEK293 cells leads to increased cell death, as well as increased constitutive and stimulated channel activity, both of which can be prevented using TRPV4 antagonists. Furthermore, these mutations induce sustained activation of ERK1/2, indicating that their effects converge with that of KRAS and FGFR1 mutations on the activation of the MAPK pathway in GCLJ. Our data extend the spectrum of TRPV4 channelopathies and provide rationale for the use of TRPV4 and RAS/MAPK antagonists at the bedside in GCLJ.Giant cell lesions of the jaw (GCLJ) are debilitating benign tumors of unclear origin. The authors identify driver recurrent somatic mutations in TRPV4, KRAS and FGFR1 and show they converge on aberrant activation of the MAPK pathway. Their findings extend the spectrum of TRPV4 channelopathies and provide rationale for targeted therapies at the bedside in GCLJ.
Acta Neuropathologica | 2018
Elvis Terci Valera; Melissa K. McConechy; Tenzin Gayden; Barbara Rivera; David T. W. Jones; Andrea Wittmann; HyeRim Han; Eric Bareke; Hamid Nikbakht; Leonie G. Mikael; Rosane Gomes de Paula Queiroz; Veridiana K. Suazo; Ji Hoon Phi; Seung-Ki Kim; Sung-Hye Park; Raita Fukaya; Mi-Sun Yum; Tae-Sung Ko; Ricardo Santos de Oliveira; Hélio Rubens Machado; María Sol Brassesco; Antonio Carlos do Santos; Gustavo Novelino Simão; Leandra Naira Zambelli Ramalho; Luciano Neder; Carlos Alberto Scrideli; Luiz Gonzaga Tone; Jacek Majewski; Nada Jabado
Elvis Terci Valera1,2*, Melissa K. McConechy2*, Tenzin Gayden3*, Barbara Rivera2, David T. W. Jones4, Andrea Wittmann4, HyeRim Han2, Eric Bareke5, Hamid Nikbakht5, Leonie Mikael3, Rosane Gomes Queiroz1, Veridiana Kiill Suazo1, Ji Hoon Phi6, Seung-Ki Kim6, Sung-Hye Park7, Raita Fukaya8,9, Mi-Sun Yum10, Tae-Sung Ko10, Ricardo Santos de Oliveira11, Helio Rubens Machado11, María Sol Brassesco12, Antonio Carlos do Santos13, Gustavo Novelino Simão13, Leandra Náira Zambelli Ramalho14, Luciano Neder14, Carlos Alberto Scrideli1, Luiz Gonzaga Tone#1, Jacek Majewski#2,5, Nada Jabado#2,3