Nicolas De Jay
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nicolas De Jay.
Nature Genetics | 2014
Adam M. Fontebasso; Simon Papillon-Cavanagh; Jeremy Schwartzentruber; Hamid Nikbakht; Noha Gerges; Pierre‑Olivier Fiset; Denise Bechet; Damien Faury; Nicolas De Jay; Lori A. Ramkissoon; Aoife Corcoran; David T. W. Jones; Dominik Sturm; Pascal Johann; Tadanori Tomita; Stewart Goldman; Mahmoud Nagib; Liliana Goumnerova; Daniel C. Bowers; Jeffrey R. Leonard; Joshua B. Rubin; Tord D. Alden; Samuel R. Browd; J. Russell Geyer; Sarah Leary; George I. Jallo; Kenneth Cohen; Nalin Gupta; Michael D. Prados; Anne Sophie Carret
Pediatric midline high-grade astrocytomas (mHGAs) are incurable with few treatment targets identified. Most tumors harbor mutations encoding p.Lys27Met in histone H3 variants. In 40 treatment-naive mHGAs, 39 analyzed by whole-exome sequencing, we find additional somatic mutations specific to tumor location. Gain-of-function mutations in ACVR1 occur in tumors of the pons in conjunction with histone H3.1 p.Lys27Met substitution, whereas FGFR1 mutations or fusions occur in thalamic tumors associated with histone H3.3 p.Lys27Met substitution. Hyperactivation of the bone morphogenetic protein (BMP)-ACVR1 developmental pathway in mHGAs harboring ACVR1 mutations led to increased levels of phosphorylated SMAD1, SMAD5 and SMAD8 and upregulation of BMP downstream early-response genes in tumor cells. Global DNA methylation profiles were significantly associated with the p.Lys27Met alteration, regardless of the mutant histone H3 variant and irrespective of tumor location, supporting the role of this substitution in driving the epigenetic phenotype. This work considerably expands the number of potential treatment targets and further justifies pretreatment biopsy in pediatric mHGA as a means to orient therapeutic efforts in this disease.
Science | 2016
Chao Lu; Siddhant U. Jain; Dominik Hoelper; Denise Bechet; Rosalynn C. Molden; Leili Ran; Devan Murphy; Sriram Venneti; Meera Hameed; Bruce R. Pawel; Jay S. Wunder; Brendan C. Dickson; Stefan M. Lundgren; Krupa S. Jani; Nicolas De Jay; Simon Papillon-Cavanagh; Irene L. Andrulis; Sarah L. Sawyer; David Grynspan; Robert E. Turcotte; Javad Nadaf; Somayyeh Fahiminiyah; Tom W. Muir; Jacek Majewski; Craig B. Thompson; Ping Chi; Benjamin A. Garcia; C. David Allis; Nada Jabado; Peter W. Lewis
An oncohistone deranges inhibitory chromatin Missense mutations (that change one amino acid for another) in histone H3 can produce a so-called oncohistone and are found in a number of pediatric cancers. For example, the lysine-36–to-methionine (K36M) mutation is seen in almost all chondroblastomas. Lu et al. show that K36M mutant histones are oncogenic, and they inhibit the normal methylation of this same residue in wild-type H3 histones. The mutant histones also interfere with the normal development of bone-related cells and the deposition of inhibitory chromatin marks. Science, this issue p. 844 The lysine-36–to–methionine mutation in histone H3 is oncogenic and interferes with inhibitory chromatin marks. Several types of pediatric cancers reportedly contain high-frequency missense mutations in histone H3, yet the underlying oncogenic mechanism remains poorly characterized. Here we report that the H3 lysine 36–to–methionine (H3K36M) mutation impairs the differentiation of mesenchymal progenitor cells and generates undifferentiated sarcoma in vivo. H3K36M mutant nucleosomes inhibit the enzymatic activities of several H3K36 methyltransferases. Depleting H3K36 methyltransferases, or expressing an H3K36I mutant that similarly inhibits H3K36 methylation, is sufficient to phenocopy the H3K36M mutation. After the loss of H3K36 methylation, a genome-wide gain in H3K27 methylation leads to a redistribution of polycomb repressive complex 1 and de-repression of its target genes known to block mesenchymal differentiation. Our findings are mirrored in human undifferentiated sarcomas in which novel K36M/I mutations in H3.1 are identified.
Cancer Cell | 2017
Manav Pathania; Nicolas De Jay; Nicola Maestro; Ashot S. Harutyunyan; Justyna Nitarska; Pirasteh Pahlavan; Stephen Henderson; Leonie G. Mikael; Angela Richard-Londt; Ying Zhang; Joana R. Costa; Steven Hébert; Sima Khazaei; Nisreen Samir Ibrahim; Javier Herrero; Antonella Riccio; Steffen Albrecht; Robin Ketteler; Sebastian Brandner; Claudia L. Kleinman; Nada Jabado; Paolo Salomoni
Gain-of-function mutations in histone 3 (H3) variants are found in a substantial proportion of pediatric high-grade gliomas (pHGG), often in association with TP53 loss and platelet-derived growth factor receptor alpha (PDGFRA) amplification. Here, we describe a somatic mouse model wherein H3.3K27M and Trp53 loss alone are sufficient for neoplastic transformation if introduced in utero. H3.3K27M-driven lesions are clonal, H3K27me3 depleted, Olig2 positive, highly proliferative, and diffusely spreading, thus recapitulating hallmark molecular and histopathological features of pHGG. Addition of wild-type PDGFRA decreases latency and increases tumor invasion, while ATRX knockdown is associated with more circumscribed tumors. H3.3K27M-tumor cells serially engraft in recipient mice, and preliminary drug screening reveals mutation-specific vulnerabilities. Overall, we provide a faithful H3.3K27M-pHGG model which enables insights into oncohistone pathogenesis and investigation of future therapies.
Nature Communications | 2017
Ryuhjin Ahn; Valerie Sabourin; Alicia M. Bolt; Steven Hébert; Stephanie Totten; Nicolas De Jay; Maria Carolina Festa; Yoon Kow Young; Young Kyuen Im; Tony Pawson; Antonis E. Koromilas; William J. Muller; Koren K. Mann; Claudia L. Kleinman; Josie Ursini-Siegel
Tyrosine kinase signalling within cancer cells is central to the establishment of an immunosuppressive microenvironment. Although tyrosine kinase inhibitors act, in part, to augment adaptive immunity, the increased heterogeneity and functional redundancy of the tyrosine kinome is a hurdle to achieving durable responses to immunotherapies. We previously identified the Shc1 (ShcA) scaffold, a central regulator of tyrosine kinase signalling, as essential for promoting breast cancer immune suppression. Herein we show that the ShcA pathway simultaneously activates STAT3 immunosuppressive signals and impairs STAT1-driven immune surveillance in breast cancer cells. Impaired Y239/Y240-ShcA phosphorylation selectively reduces STAT3 activation in breast tumours, profoundly sensitizing them to immune checkpoint inhibitors and tumour vaccines. Finally, the ability of diminished tyrosine kinase signalling to initiate STAT1-driven immune surveillance can be overcome by compensatory STAT3 hyperactivation in breast tumours. Our data indicate that inhibition of pY239/240-ShcA-dependent STAT3 signalling may represent an attractive therapeutic strategy to sensitize breast tumours to multiple immunotherapies.
Acta neuropathologica communications | 2017
Ralph Salloum; Melissa K. McConechy; Leonie G. Mikael; Christine Fuller; Mariko DeWire; Hamid Nikbakht; Nicolas De Jay; Xiaodan Yang; Daniel R. Boué; Lionel M.L. Chow; Jonathan L. Finlay; Tenzin Gayden; Jason Karamchandani; Trent R. Hummel; Randal Olshefski; Diana S. Osorio; Charles B. Stevenson; Claudia L. Kleinman; Jacek Majewski; Maryam Fouladi; Nada Jabado
Pediatric high-grade gliomas (pHGGs) are aggressive neoplasms representing approximately 20% of brain tumors in children. Current therapies offer limited disease control, and patients have a poor prognosis. Empiric use of targeted therapy, especially at progression, is increasingly practiced despite a paucity of data regarding temporal and therapy-driven genomic evolution in pHGGs. To study the genetic landscape of pHGGs at recurrence, we performed whole exome and methylation analyses on matched primary and recurrent pHGGs from 16 patients. Tumor mutational profiles identified three distinct subgroups. Group 1 (n = 7) harbored known hotspot mutations in Histone 3 (H3) (K27M or G34V) or IDH1 (H3/IDH1 mutants) and co-occurring TP53 or ACVR1 mutations in tumor pairs across the disease course. Group 2 (n = 7), H3/IDH1 wildtype tumor pairs, harbored novel mutations in chromatin modifiers (ZMYND11, EP300 n = 2), all associated with TP53 alterations, or had BRAF V600E mutations (n = 2) conserved across tumor pairs. Group 3 included 2 tumors with NF1 germline mutations. Pairs from primary and relapsed pHGG samples clustered within the same DNA methylation subgroup. ATRX mutations were clonal and retained in H3G34V and H3/IDH1 wildtype tumors, while different genetic alterations in this gene were observed at diagnosis and recurrence in IDH1 mutant tumors. Mutations in putative drug targets (EGFR, ERBB2, PDGFRA, PI3K) were not always shared between primary and recurrence samples, indicating evolution during progression. Our findings indicate that specific key driver mutations in pHGGs are conserved at recurrence and are prime targets for therapeutic development and clinical trials (e.g. H3 post-translational modifications, IDH1, BRAF V600E). Other actionable mutations are acquired or lost, indicating that re-biopsy at recurrence will provide better guidance for effective targeted therapy of pHGGs.
Mammalian Genome | 2016
Nancy Lévesque; Daniel Leclerc; Tenzin Gayden; Anthoula Lazaris; Nicolas De Jay; Stephanie Petrillo; Peter Metrakos; Nada Jabado; Rima Rozen
Polymorphisms and decreased activity of methylenetetrahydrofolate reductase (MTHFR) are linked to disease, including cancer. However, epigenetic regulation has not been thoroughly studied. Our goal was to generate DNA methylation profiles of murine/human MTHFR gene regions and examine methylation in brain and liver tumors. Pyrosequencing in four murine tissues revealed minimal DNA methylation in the CpG island. Higher methylation was seen in liver or intestine in the CpG island shore 5′ to the upstream translational start site or in another region 3′ to the downstream start site. In the latter region, there was negative correlation between expression and methylation. Three orthologous regions were investigated in human MTHFR, as well as a fourth region between the two translation start sites. We found significantly increased methylation in three regions (not the CpG island) in pediatric astrocytomas compared with control brain, with decreased expression in tumors. Methylation in hepatic carcinomas was also increased in the three regions compared with normal liver, but the difference was significant for only one CpG. This work, the first overview of the Mthfr/MTHFR epigenetic landscape, suggests regulation through methylation in some regions, demonstrates increased methylation/decreased expression in pediatric astrocytomas, and should serve as a resource for future epigenetic studies.
Oncotarget | 2015
Adam M. Fontebasso; Margret Shirinian; Dong-Anh Khuong-Quang; Denise Bechet; Tenzin Gayden; Marcel Kool; Nicolas De Jay; Karine Jacob; Noha Gerges; Barbara Hutter; Huriye Şeker-Cin; Hendrik Witt; Alexandre Montpetit; Sébastien Brunet; Pierre Lepage; Geneviève Bourret; Almos Klekner; László Bognár; Péter Hauser; Miklós Garami; Jean-Pierre Farmer; Jose-Luis Montes; Jeffrey Atkinson; Sally R. Lambert; Tony Kwan; Andrey Korshunov; Uri Tabori; V. Peter Collins; Steffen Albrecht; Damien Faury
Pilocytic astrocytoma (PA) is the most common brain tumor in children but is rare in adults, and hence poorly studied in this age group. We investigated 222 PA and report increased aneuploidy in older patients. Aneuploid genomes were identified in 45% of adult compared with 17% of pediatric PA. Gains were non-random, favoring chromosomes 5, 7, 6 and 11 in order of frequency, and preferentially affecting non-cerebellar PA and tumors with BRAF V600E mutations and not with KIAA1549-BRAF fusions or FGFR1 mutations. Aneuploid PA differentially expressed genes involved in CNS development, the unfolded protein response, and regulators of genomic stability and the cell cycle (MDM2, PLK2),whose correlated programs were overexpressed specifically in aneuploid PA compared to other glial tumors. Thus, convergence of pathways affecting the cell cycle and genomic stability may favor aneuploidy in PA, possibly representing an additional molecular driver in older patients with this brain tumor.
Nature Communications | 2018
Carolina Cavaliéri Gomes; Tenzin Gayden; Andrea Bajic; Osama F. Harraz; Jonathan Pratt; Hamid Nikbakht; Eric Bareke; Marina Gonçalves Diniz; Wagner Henriques Castro; Pascal St-Onge; Daniel Sinnett; HyeRim Han; Barbara Rivera; Leonie G. Mikael; Nicolas De Jay; Claudia L. Kleinman; Elvis Terci Valera; Angelia V. Bassenden; Albert M. Berghuis; Jacek Majewski; Mark T. Nelson; Ricardo Santiago Gomez; Nada Jabado
Giant cell lesions of the jaw (GCLJ) are debilitating tumors of unknown origin with limited available therapies. Here, we analyze 58 sporadic samples using next generation or targeted sequencing and report somatic, heterozygous, gain-of-function mutations in KRAS, FGFR1, and p.M713V/I-TRPV4 in 72% (42/58) of GCLJ. TRPV4 p.M713V/I mutations are exclusive to central GCLJ and occur at a critical position adjacent to the cation permeable pore of the channel. Expression of TRPV4 mutants in HEK293 cells leads to increased cell death, as well as increased constitutive and stimulated channel activity, both of which can be prevented using TRPV4 antagonists. Furthermore, these mutations induce sustained activation of ERK1/2, indicating that their effects converge with that of KRAS and FGFR1 mutations on the activation of the MAPK pathway in GCLJ. Our data extend the spectrum of TRPV4 channelopathies and provide rationale for the use of TRPV4 and RAS/MAPK antagonists at the bedside in GCLJ.Giant cell lesions of the jaw (GCLJ) are debilitating benign tumors of unclear origin. The authors identify driver recurrent somatic mutations in TRPV4, KRAS and FGFR1 and show they converge on aberrant activation of the MAPK pathway. Their findings extend the spectrum of TRPV4 channelopathies and provide rationale for targeted therapies at the bedside in GCLJ.
Cancer Research | 2018
Ashot S. Harutyunyan; Brian Krug; Simon Papillon-Cavanagh; Haifen Chen; Shriya Deshmukh; Warren Cheung; Rui Li; Jad Belle; Denise Bechet; Nicolas De Jay; Michele Zeinieh; Tenzin Gayden; Caterina Russo; Leonie Mikael; Damien Faury; Claudia L. Kleinman; Tomi Pastinen; Jacek Majewski; Nada Jabado
Background: Glioblastoma is a grade IV malignant brain tumor with poor prognosis and rapid disease progression. Recurrent somatic mutations in histone H3 genes have been identified in the majority of pediatric glioblastoma cases. The K27M mutation in H3.1 and H3.3 histones globally inhibits lysine methylation at the K27 position, whereas H3.3 G34R/V possibly affects histone lysine methylation at the K36 position. H3 K27M mutation has been shown to dramatically decrease the total levels of H3K27me3 and H3K27me2 marks and increase H3K27ac levels. However, the effect of H3 K27M on global epigenomic changes is not fully characterized. Furthermore, standard profiling of histone marks by chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) is not quantitative, a significant caveat when global levels of histone marks change so drastically. Methods: We assembled a collection of H3 K27M mutant and wild-type cell lines derived from the glioblastoma patients. The epigenomes of these cell lines were comprehensively characterized by profiling for six histone marks (H3K4me1, H3K4me3, H3K27ac, H3K27me3, H3K36me2, H3K36me3) using ChIP-seq. In addition, we derived isogenic cell lines overexpressing H3.3 K27M, as well as cell lines with knockin or knockout of the K27M mutation using the CRISPR/Cas9 genome editing system. These cell lines were profiled for H3K27me3 mark by ChIP-seq. We used a modified ChIP-seq protocol, chromatin immunoprecipitation with exogenous reference genome (ChIP-Rx), which allows quantitation of histone mark abundance by normalization to proportions of added Drosophila chromatin in the ChIP reaction. RNA sequencing was performed on both primary and isogenic cell lines. Results: The most striking difference we observed between H3 K27M and wild-type cells was in H3K27me3 mark. Using ChIP-Rx, we observe significantly lower levels of H3K27me3 mark in H3 K27M cell lines, both in primary cells and isogenic contexts. Despite very low total levels of H3K27me3 mark, K27M mutant cells display enrichment of the mark in certain regions, at comparable levels to wild-type cell lines. Using our isogenic cell line models, we show that K27M mutation is indeed responsible for those genome-wide changes in the epigenome. Correlating H3K27me3 distribution with transcriptome data, we show that expression changes mainly among the genes that are lowly expressed in these cells. Pathway analysis of differentially expressed genes shows enrichment for neural development and differentiation that suggests links to disease pathogenesis. Conclusions: Despite the fact that primary cell lines have different origins and a variety of additional driver mutations, their epigenomes appears to be remarkably similar, due to being shaped predominantly by the effects of histone mutations, as demonstrated in isogenic cell line systems. Global changes in H3K27me3 levels and distribution in H3 K27M mutant cells lead to specific changes in gene expression. The changes induced by K27M mutations also appear to be specific to the cell type and/or developmental context of origin. This may help better understand the effect they have in reshaping the epigenome to promote oncogenesis. Citation Format: Ashot S. Harutyunyan, Brian Krug, Simon Papillon-Cavanagh, Haifen Chen, Shriya Deshmukh, Warren A. Cheung, Rui Li, Jad Belle, Denise Bechet, Nicolas De Jay, Michele Zeinieh, Tenzin Gayden, Caterina Russo, Leonie Mikael, Damien Faury, Claudia Kleinman, Tomi Pastinen, Jacek Majewski, Nada Jabado. Identification of epigenomic changes induced by H3 K27M mutation in glioblastoma using patient-derived and CRISPR/Cas9 edited cell lines [abstract]. In: Proceedings of the AACR Special Conference: Pediatric Cancer Research: From Basic Science to the Clinic; 2017 Dec 3-6; Atlanta, Georgia. Philadelphia (PA): AACR; Cancer Res 2018;78(19 Suppl):Abstract nr B44.
Pediatric Blood & Cancer | 2017
Pierre‑Olivier Fiset; Adam M. Fontebasso; Nicolas De Jay; Tenzin Gayden; Hamid Nikbakht; Jacek Majewski; Nada Jabado; Steffen Albrecht
A cerebellar pilocytic astrocytoma (PA) in a child recurred first with a PA histology and then with features of a ganglioglioma (GG). Molecular genetic analyses of the tumors confirmed a BRAF V600E mutation in all. They also all harbored a T202M mutation in ERK1, a kinase downstream of BRAF that is implicated in glial versus neuronal differentiation. The GG sample contained several variants that were not present in the PA samples; in particular, it had a truncating mutation in MAP2. These findings not only underscore the role of BRAF as oncogenic driver but also suggest that other genes may influence tumor morphology.