Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Han Bo Ram Lee is active.

Publication


Featured researches published by Han Bo Ram Lee.


Journal of Vacuum Science & Technology B | 2003

Advances in nanolithography using molecular rulers

Mary E. Anderson; Lim-Piu Tan; Hirofumi Tanaka; Morgan Mihok; Han Bo Ram Lee; Mark W. Horn; Paul S. Weiss

The combination of conventional lithographic techniques with chemical self-assembly allows for the creation of nanostructures whose spacing and edge resolution reach nanometer-scale precision. The controlled placement and thickness of self-assembled multilayers composed of alternating layers of α,ω-mercaptoalkanoic acids and coordinated metal ions form precise “molecular ruler” resists that enable the production of tailored and lithographically defined metal patterns. Initial structures created by conventional techniques are referred to as parents and subsequent structures generated by the molecular ruler process are identified as daughters. We report the further creation of subsequent generation structures (granddaughters) that have sub-100 nm dimensions. The granddaughter structures are created by forming molecular rulers on parent and daughter structures, and can be isolated by removing sacrificial parent and/or daughter structures. This process has also been utilized in combination with parent structu...


Scientific Reports | 2016

Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides.

Youngjun Kim; Jeong Gyu Song; Yong Ju Park; Gyeong Hee Ryu; Su Jeong Lee; Jin Sung Kim; Pyo Jin Jeon; Chang Wan Lee; Whang Je Woo; Taejin Choi; Hanearl Jung; Han Bo Ram Lee; Jae Min Myoung; Seongil Im; Zonghoon Lee; Jong Hyun Ahn; J. Park; Hyungjun Kim

This work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a process in which the number of layers is determined by temperature rather than process cycles due to the chemically inactive nature of 2D MoS2. Through spectroscopic and microscopic investigation it is demonstrated that SLS is capable of producing MoS2 with a wafer-scale (~10 cm) layer-number uniformity of more than 90%, which when used as the active layer in a top-gated field-effect transistor, produces an on/off ratio as high as 108. This process is also shown to be applicable to WSe2, with a PN diode fabricated from a MoS2/WSe2 heterostructure exhibiting gate-tunable rectifying characteristics.


ACS Applied Materials & Interfaces | 2015

Improved Corrosion Resistance and Mechanical Properties of CrN Hard Coatings with an Atomic Layer Deposited Al2O3 Interlayer.

Zhixin Wan; Teng Fei Zhang; Han Bo Ram Lee; Ji Hoon Yang; Woo Chang Choi; Byungchan Han; Kwang Ho Kim; Se Hun Kwon

A new approach was adopted to improve the corrosion resistance of CrN hard coatings by inserting a Al2O3 layer through atomic layer deposition. The influence of the addition of a Al2O3 interlayer, its thickness, and the position of its insertion on the microstructure, surface roughness, corrosion behavior, and mechanical properties of the coatings was investigated. The results indicated that addition of a dense atomic layer deposited Al2O3 interlayer led to a significant decrease in the average grain size and surface roughness and to greatly improved corrosion resistance and corrosion durability of CrN coatings while maintaining their mechanical properties. Increasing the thickness of the Al2O3 interlayer and altering its insertion position so that it was near the surface of the coating also resulted in superior performance of the coating. The mechanism of this effect can be explained by the dense Al2O3 interlayer acting as a good sealing layer that inhibits charge transfer, diffusion of corrosive substances, and dislocation motion.


Journal of Materials Chemistry C | 2015

In situ surface cleaning on a Ge substrate using TMA and MgCp2 for HfO2-based gate oxides

Il Kwon Oh; Kangsik Kim; Zonghoon Lee; Jeong Gyu Song; Chang Wan Lee; David Thompson; Han Bo Ram Lee; Woo Hee Kim; Wan Joo Maeng; Hyungjun Kim

Comparative studies of the in situ surface cleaning effect on Ge substrates using trimethyl aluminum (TMA) and dicyclopentadienyl magnesium (MgCp2) were performed. The surface cleaning process is the direct exposure of either a TMA or MgCp2 precursor on a Ge surface prior to the deposition of a HfO2 gate dielectric. Also, we studied a HfO2/Al2O3 and MgO bilayer on uncleaned Ge using the same precursors for comparison with surface treatment. From the correlation of chemical composition, line profile, atomic scale imaging and electrical evaluation, MgCp2 was the most effective method for reducing Ge diffusion into the HfO2 dielectric layer via the efficient surface cleaning process. MgCp2 cleaning produces thermally-stable Ge oxides while TMA cleaning reduces all types of Ge sub-oxides. As a result, the process can form a thermally-stable interface layer primarily composed of Ge3+, leading to better electrical properties than TMA.


Electronic Materials Letters | 2016

High efficiency n-Si/p-Cu2O core-shell nanowires photodiode prepared by atomic layer deposition of Cu2O on well-ordered Si nanowires array

Hangil Kim; Soo-Hyun Kim; Kyung Yong Ko; Hyungjun Kim; Jae-Hoon Kim; Jihun Oh; Han Bo Ram Lee

A highly efficient n-Si/p-Cu2O core-shell (C-S) nanowire (NW) photodiode was fabricated using Cu2O grown by atomic layer deposition (ALD) on a well-ordered Si NW array. Ordered Si nanowires arrays were fabricated by nano-sphere lithography to pattern metal catalysts for the metal-assisted etching of silicon, resulting in a Si NW arrays with a good arrangement, smooth surface and small diameter distribution. The ALD-Cu2O thin films were grown using a new non-fluorinated Cu precursor, bis(1-dimethylamino-2-methyl-2-butoxy)copper (C14H32N2O2Cu), and water vapor (H2O) at 140°C. Transmission electron microscopy equipped with an energy dispersive spectrometer confirmed that p-Cu2O thin films had been coated over arrayed Si NWs with a diameter of 150 nm (aspect ratio of ∼7.6). The C-S NW photodiode exhibited more sensitive photodetection performance under ultraviolet illumination as well as an enhanced photocurrent density in the forward biasing region than the planar structure diode. The superior performance of C-S NWs photodiode was explained by the lower reflectance of light and the effective carrier separation and collection originating from the C-S NWs structure.


Nanotechnology | 2017

Atomic layer deposition of 1D and 2D nickel nanostructures on graphite

Seung Wook Ryu; Jaehong Yoon; Hyoung Seok Moon; Bonggeun Shong; Hyungjun Kim; Han Bo Ram Lee

One-dimensional (1D) nanowires (NWs) and two-dimensional (2D) thin films of Ni were deposited on highly ordered pyrolytic graphite (HOPG) by atomic layer deposition (ALD), using NH3 as a counter reactant. Thermal ALD using NH3 gas forms 1D NWs along step edges, while NH3 plasma enables the deposition of a continuous 2D film over the whole surface. The lateral and vertical growth rates of the Ni NWs are numerically modeled as a function of the number of ALD cycles. Pretreatment with NH3 gas promotes selectivity in deposition by the reduction of oxygenated functionalities on the HOPG surface. On the other hand, NH3 plasma pretreatment generates surface nitrogen species, and results in a morphological change in the basal plane of graphite, leading to active nucleation across the surface during ALD. The effects of surface nitrogen species on the nucleation of ALD Ni were theoretically studied by density functional theory calculations. Our results suggest that the properties of Ni NWs, such as their density and width, and the formation of Ni thin films on carbon surfaces can be controlled by appropriate use of NH3.


IEEE Electron Device Letters | 2016

Effects of TaN Diffusion Barrier on Cu-Gate ZnO:N Thin-Film Transistors

Whang Je Woo; Taewook Nam; Hanearl Jung; Il Kwon Oh; Jeong Gyu Song; Han Bo Ram Lee; W.J. Maeng; Hyungjun Kim

The effects of TaN Cu diffusion barrier in Cu-gate ZnO:N thin-film transistors (TFTs) were studied. Bias stress tests were performed on Cu-gate TFTs with atomic layer deposited Al2O3 and HfO2 gate insulators. The mobility, the threshold voltage, and the reliability were significantly improved by applying a TaN diffusion barrier at the interface between the Cu gate and the gate insulator. The reduction in Cu diffusion by the diffusion barrier is a key process that increases device stability and results in improved oxide TFT performance.


Journal of Coatings Technology and Research | 2017

Uniform color coating of multilayered TiO2/Al2O3 films by atomic layer deposition

Woo Hee Kim; Hyungjun Kim; Han Bo Ram Lee

Thin film optics, based on light interference characteristics, are attracting increasing interest because of their ability to enable a functional color coating for various applications in optical, electronic, and solar industries. Here, we report on the dependence of coloring characteristics on single-layer TiO2 thicknesses and alternating TiO2/Al2O3 multilayer structures prepared by atomic layer deposition (ALD) at a low growth temperature. The ALD TiO2 and Al2O3 thin films were studied at a low growth temperature of 80°C. Then, the coloring features in the single-layer TiO2 and alternating TiO2/Al2O3 multilayers using both the ALD processes were experimentally examined on a TiN/cut stainless steel sheet. The Essential Macleod software was used to estimate and compare the color coating results. The simulation results revealed that five different colors of the single TiO2 layers were shown experimentally, depending on the film thickness. For the purpose of highly uniform pink color coating, the film structures of TiO2/Al2O3 multilayers were designed in advance. It was experimentally demonstrated that the evaluated colors corresponded well with the simulated color spectrum results, exhibiting a uniform pink color with wide incident angles ranging from 0° to 75°. This article advances practical applications requiring highly uniform color coatings of surfaces in a variety of optical coating areas with complex topographical structures.


ACS Applied Materials & Interfaces | 2017

Reaction Mechanism of Area-Selective Atomic Layer Deposition for Al2O3 Nanopatterns

Seunggi Seo; Byung Chul Yeo; Sang Soo Han; Chang Mo Yoon; Joon Young Yang; Jonggeun Yoon; Choongkeun Yoo; Ho Jin Kim; Yong Baek Lee; Su Jeong Lee; Jae Min Myoung; Han Bo Ram Lee; Woo Hee Kim; Il Kwon Oh; Hyungjun Kim

The reaction mechanism of area-selective atomic layer deposition (AS-ALD) of Al2O3 thin films using self-assembled monolayers (SAMs) was systematically investigated by theoretical and experimental studies. Trimethylaluminum (TMA) and H2O were used as the precursor and oxidant, respectively, with octadecylphosphonic acid (ODPA) as an SAM to block Al2O3 film formation. However, Al2O3 layers began to form on the ODPA SAMs after several cycles, despite reports that CH3-terminated SAMs cannot react with TMA. We showed that TMA does not react chemically with the SAM but is physically adsorbed, acting as a nucleation site for Al2O3 film growth. Moreover, the amount of physisorbed TMA was affected by the partial pressure. By controlling it, we developed a new AS-ALD Al2O3 process with high selectivity, which produces films of ∼60 nm thickness over 370 cycles. The successful deposition of Al2O3 thin film patterns using this process is a breakthrough technique in the field of nanotechnology.


Chemistry of Materials | 2015

Hydrophobicity of Rare Earth Oxides Grown by Atomic Layer Deposition

Il Kwon Oh; Kangsik Kim; Zonghoon Lee; Kyung Yong Ko; Chang Wan Lee; Su Jeong Lee; Jae Min Myung; Clement Lansalot-Matras; Wontae Noh; Christian Dussarrat; Hyungjun Kim; Han Bo Ram Lee

Collaboration


Dive into the Han Bo Ram Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zonghoon Lee

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyun Gu Kim

Incheon National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge