Hana Černocká
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hana Černocká.
Journal of the American Chemical Society | 2010
Veronika Ostatná; Hana Černocká; Emil Paleček
Dithiothreitol (DTT)-mercury and DTT-solid amalgam electrodes are proposed for protein microanalysis by means of constant current chronopotentiometric stripping (CPS). At the DTT-modified hanging mercury drop electrode (DTT-HMDE), proteins at nanomolar concentrations produce the CPS peak H, which is due to the protein catalyzed hydrogen evolution. Self-assembled monolayers (SAMs) of DTT at the electrode surface protected surface-attached proteins from the electric field-driven denaturation, but did not interfere with the electrocatalysis. Using CPS peak H, native and denatured forms of bovine serum albumin (BSA) and of other proteins were easily distinguished. On the other hand, in usual slow scan voltammetry (scan rates between 50 mV/s and 1 V/s), the adsorbed BSA behaved as fully or partially denatured. BSA-modified DTT-HMDE was exposed to different potentials, E(B) for 60 s, followed by CPS measurement. Three E(B) regions were observed, in which either BSA remained native (A, -0.1 to -0.3 V), was denatured (B, -0.35 to -1.4 V), or underwent desorption (C, at potentials more negative than -1.4 V). At potentials more positive than the reduction potential of the DTT Hg-S bond (approximately -0.65 V against Ag|AgCl|3 M KCl), the densely packed DTT SAM was impermeable to [Ru(NH(3))(6)](3+). At more negative potentials, the DTT SAM was disturbed, but under conditions of CPS (with very fast potential changes), this SAM still protected the protein from surface-induced denaturation. Thiol-modified Hg electrodes in combination with CPS represent a new tool for protein analysis in biomedicine and proteomics.
Oncogene | 1999
Emil Paleček; Marie Brázdová; Hana Černocká; Daniel Vlk; Václav Brázda; Bořivoj Vojtěšek
Recently we have shown that wild-type human p53 protein binds preferentially to supercoiled (sc) DNA in vitro in both the presence and absence of the p53 consensus sequence (p53CON). This binding produces a ladder of retarded bands on an agarose gel. Using immunoblotting with the antibody DO-1, we show that the bands obtained correspond to ethidium-stained DNA, suggesting that each band of the ladder contains a DNA-p53 complex. The intensity and the number of these bands are decreased by physiological concentrations of zinc ions. At higher zinc concentrations, binding of p53 to scDNA is completely inhibited. The binding of additional zinc ions to p53 appears much weaker than the binding of the intrinsic zinc ion in the DNA binding site of the core domain. In contrast to previously published data suggesting that 100 μM zinc ions do not influence p53 binding to p53CON in a DNA oligonucleotide, we show that 5 – 20 μM zinc efficiently inhibits binding of p53 to p53CON in DNA fragments. We also show that relatively low concentrations of dithiothreitol but not of 2-mercaptoethanol decrease the concentration of free zinc ions, thereby preventing their inhibitory effect on binding of p53 to DNA. Nickel and cobalt ions inhibit binding of p53 to scDNA and to its consensus sequence in linear DNA fragments less efficiently than zinc; cobalt ions are least efficient, requiring >100 μM Co2+ for full inhibition of p53 binding. Modulation of binding of p53 to DNA by physiological concentrations of zinc might represent a novel pathway that regulates p53 activity in vivo.
Journal of the American Chemical Society | 2011
Emil Paleček; Veronika Ostatná; Hana Černocká; Andreas C. Joerger; Alan R. Fersht
We developed an innovative electrochemical method for monitoring conformational transitions in proteins using constant current chronopotentiometric stripping (CPS) with dithiothreitol-modified mercury electrodes. The method was applied to study the effect of oncogenic mutations on the DNA-binding domain of the tumor suppressor p53. The CPS responses of wild-type and mutant p53 showed excellent correlation with structural and stability data and provided additional insights into the differential dynamic behavior of the proteins. Further, we were able to monitor the loss of an essential zinc ion resulting from mutation (R175H) or metal chelation. We envisage that our CPS method can be applied to the analysis of virtually any protein as a sensor for conformational transitions or ligand binding to complement conventional techniques, but with the added benefit that only relatively small amounts of protein are needed and instant results are obtained. This work may lay the foundation for the wide application of electrochemistry in protein science, including proteomics and biomedicine.
Analytica Chimica Acta | 2012
Veronika Ostatná; Hana Černocká; Katarzyna Kurzątkowska; Emil Paleček
In an attempt to develop a label-free electrochemical method for detection of changes in protein structures based on oxidizability of tyrosine and tryptophan residues we tested different types of carbon electrodes. We found that using edge plane pyrolytic graphite electrode (EPGE) we can discriminate between native and denatured forms of human serum albumin (HSA) and of other proteins, such as bovine and chicken serum albumin, aldolase and concanavalin. Treatment of natively unfolded α-synuclein with 8 M urea resulted only in a small change in the tyrosine oxidation peak, in a good agreement with absence of highly ordered structure in this protein. Using square wave voltammetry with EPGE we were able to follow the course of HSA denaturation at different urea concentrations. The electrochemical denaturation curve agreed reasonably well with that based on intrinsic fluorescence of tyrosine and tryptophan. It can be expected that the electrochemical method will be applicable to a large number of proteins and may become useful in biomedicine and proteomics.
Analytica Chimica Acta | 2014
Emil Paleček; Hana Černocká; Veronika Ostatná; Lucie Navrátilová; Marie Brázdová
Electrochemical biosensors have the unique ability to convert biological events directly into electrical signals suitable for parallel analysis. Here we utilize specific properties of constant current chronopotentiometric stripping (CPS) in the analysis of protein and DNA-protein complex nanolayers. Rapid potential changes at high negative current intensities (Istr) in CPS are utilized in the analysis of DNA-protein interactions at thiol-modified mercury electrodes. P53 core domain (p53CD) sequence-specific binding to DNA results in a striking decrease in the electrocatalytic signal of free p53. This decrease is related to changes in the accessibility of the electroactive amino acid residues in the p53CD-DNA complex. By adjusting Istr and temperature, weaker non-specific binding can be eliminated or distinguished from the sequence-specific binding. The method also reflects differences in the stabilities of different sequence-specific complexes, including those containing spacers between half-sites of the DNA consensus sequence. The high resolving power of this method is based on the disintegration of the p53CD-DNA complex by the electric field effects at a negatively charged surface and fine adjustment of the millisecond time intervals for which the complex is exposed to these effects. Picomole amounts of p53 proteins and DNA were used for the analysis at full electrode coverage but we show that even 10-20-fold smaller amounts can be analyzed. Our method cannot however take advantage of very low detection limits of the protein CPS detection because low I(str) intensities are deleterious to the p53CD-DNA complex stability at the electrode surface. These data highlight the utility of developing biosensors offering novel approaches for studying real-time macromolecular protein dynamics.
Bioelectrochemistry | 2012
Veronika Ostatná; Hana Černocká; Emil Paleček
We have shown that proteins produce at bare mercury electrodes a well-developed chronopotentiometric peak H. At sufficiently high current densities and low ionic strengths, this peak is sensitive to changes in protein structures. At higher ionic strengths this sensitivity can be lost but it can be restored, when instead of bare, thiol-modified Hg electrodes are used. Here we studied properties of the dithiothreitol (DTT) layer at the hanging mercury drop electrode and showed that at low concentrations (5 μM-200 μM) the DTT is adsorbed as a dithiol with both -SH groups attached to the surface. At higher DTT concentrations than 1mM, a densely packed pinhole-free layer is formed with the DTT molecules bound to the electrode surface by a single -SH group, oriented perpendicularly to the surface. We found that, if a sufficiently high DTT concentration is used, preparation of the DTT-modified Hg electrodes can be omitted and proteins can be co-adsorbed with DTT on liquid Hg or solid amalgam electrodes without the loss of sensitivity for changes in protein structures. The newly observed properties of the DTT self assembled monolayers (SAMs) at Hg electrodes appear important for designing new types of solid amalgam electrode arrays for electrochemical analysis of proteins.
Analytica Chimica Acta | 2013
Hana Černocká; Veronika Ostatná; Emil Paleček
It was originally shown [10] that urease retains its enzymatic activity when adsorbed at bare mercury and solid amalgam surfaces. However the opinion later prevailed that, when adsorbed at bare metal electrodes, proteins are irreversibly denatured. Here we confirm that urease is enzymatically active at a bare solid amalgam surface as found by Santhanam et al., and we show that this enzyme is equally active at a thiol-modified amalgam surface. We also show that it is the reduced form of urease, which is enzymatically active at Hg surfaces. Oxidation of the protein, resulting in formation of disulfide bonds, strongly decreases the enzyme activity. Using constant current chronopotentiometric stripping (CPS) we show that the exposure of surface-attached urease to negative potentials results in the protein unfolding. The extent of the unfolding depends upon the amount of time for which the protein is exposed to negative potentials, and at very short times this unfolding can be avoided. At thiol-modified Hg surfaces the protein is less vulnerable to the effects of the electric field. We conclude that the loss of enzymatic activity, resulting from a 10 min exposure of the protein to -0.58 V, is not due to reduction of the disulfide bonds as suggested by Santhanam et al. This loss is probably a result of protein reorientation, due to reduction of the Hg-S bonds (formed by accessible cysteines), followed by prolonged electric field effect on the surface-attached protein.
Bioelectrochemistry | 2017
Stefan Belicky; Hana Černocká; Tomas Bertok; Alena Holazova; Kamila Réblová; Emil Paleček; Jan Tkac; Veronika Ostatná
In recent decades, it has become clear that most of human proteins are glycosylated and that protein glycosylation plays an important role in health and diseases. At present, simple, fast and inexpensive methods are sought for clinical applications and particularly for improved diagnostics of various diseases, including cancer. We propose a label- and reagent-free electrochemical method based on chronopotentiometric stripping (CPS) analysis and a hanging mercury drop electrode for the detection of interaction of sialylated protein biomarker a prostate specific antigen (PSA) with two important lectins: Sambucus nigra agglutinin (SNA) and Maackia amurensis agglutinin (MAA). Incubation of PSA-modified electrode with specific SNA lectin resulted in an increase of CPS peak H of the complex as compared to this peak of individual PSA. By adjusting polarization current and temperature, PSA-MAA interaction can be either eliminated or distinguished from the more abundant PSA-SNA complex. CPS data were in a good agreement with the data obtained by complementary methods, namely surface plasmon resonance and fluorescent lectin microarray. It can be anticipated that CPS will find application in glycomics and proteomics.
Bioelectrochemistry | 2017
Veronika Ostatná; Veronika Kasalová-Vargová; László Kékedy-Nagy; Hana Černocká; Elena E. Ferapontova
Specific DNA-protein interactions are vital for cellular life maintenance processes, such as transcriptional regulation, chromosome maintenance, replication and DNA repair, and their monitoring gives valuable information on molecular-level organization of those processes. Here, we propose a new method of label-free electrochemical sensing of sequence specific binding between the lysozyme protein and a single stranded DNA aptamer specific for lysozyme (DNAapta) that exploits the constant current chronopotentiometric stripping (CPS) analysis at modified mercury electrodes. Specific lysozyme-DNAapta binding was distinguished from nonspecific lysozyme-DNA interactions at thioglycolic acid-modified mercury electrodes, but not at the dithiothreitol-modified or bare mercury electrodes. Stability of the surface-attached lysozyme-DNAapta layer depended on the stripping current (Istr) intensity, suggesting that the integrity of the layer critically depends on the time of its exposure to negative potentials. Stabilities of different lysozyme-DNA complexes at the negatively polarized electrode surface were tested, and it was shown that structural transitions of the specific lysozyme-DNAapta complexes occur in the Istr ranges different from those observed for assemblies of lysozyme with DNA sequences capable of only nonspecific lysozyme-DNA interactions. Thus, the CPS allows distinct discrimination between specific and non-specific protein-DNA binding and provides valuable information on stability of the nucleic acid-protein interactions at the polarized interfaces.
Journal of Biomolecular Structure & Dynamics | 2000
R. H. Sarma; M. H. Sarma; Miroslav Fojta; Marie Brázdová; Hana Černocká; Petr Pečinka; Václav Brázda; Jan Paleček; Eva B. Jagelská; Borivoj Vojtesek; Šárka Pospíšilová; Vinod Subramaniam; Thomas M. Jovin; Emil Paleček
Summary Wild type human full length (f.1.) tumor suppressor p53 protein binds preferentially to super-coiled (sc) DNA in vitro both in the presence and absence of the p53 consensus sequence (p53CON). This binding produces a ladder of retarded bands on the agarose gel. Bands revealed by immunoblotting with antibody DO-1 corresponded to the ethidium stained retarded bands. The intensity and the number of bands of p53-scDNA complex were decreased by physiological concentrations of unchelated zinc ions. Nickel and cobalt ions inhibited binding of p53 to scDNA and to p53CON in linear DNA fragments less efficiently than zinc. Compared to the intrinsic zinc strongly bound to Cys 176, Cys 238, Cys 242 and His 179 in the p53 core domain, binding of additional Zn2+ to p53 was much weaker as shown by an easy removal of the latter ions by low concentrations of EDTA. Oxidation of the protein with diamide resulted in a decrease of the number of the retarded bands. Under the same conditions, no binding of oxidized p53 to p53CON in a linear DNA fragment was observed. In agreement with the literature oxidation of f.1. p53 with diamide was irreversible and was not reverted by an excess of DTT. We showed that in the presence of 0.1 mM zinc ions, oxidation of p53 became reversible. Other divalent cations tested (cadmium, cobalt, nickel) exhibited no such effect. We suggested that the irreversibility of p53 oxidation was due, at least in part, to the removal of intrinsic zinc from its position in the DNA binding domain (after oxidation of the three cysteines to which the zinc ion is coordinated in the reduced protein) accompanied by a change in the p53 conformation. Binding of C-terminal anti-p53 antibody also protected bacterially expressed protein against irreversible loss of activity due to diamide oxidation. Binding the human p53 core domain (segment 94–312) to scDNA greatly differed from that observed with the full-length p53. The core domain did not posses the ability to bind strongly to many sites in scDNA regardless of the presence or absence of p53CON suggesting involvement of some other domain (probably C-terminal) in binding of the full-length p53 to scDNA. Supershift experiments using antibodies against p53 N- or C-terminus suggested that in oxidized p53, scDNA binding through the C-terminus gained importance.