Hanieh Fattahi
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hanieh Fattahi.
Optics Letters | 2012
Yunpei Deng; Alexander Schwarz; Hanieh Fattahi; Moritz Ueffing; Xun Gu; Marcus Ossiander; Thomas Metzger; Volodymyr Pervak; Hideki Ishizuki; Takunori Taira; Takayoshi Kobayashi; Gilad Marcus; Ferenc Krausz; Reinhard Kienberger; Nicholas Karpowicz
We produce 1.5 cycle (10.5 fs), 1.2 mJ, 3 kHz carrier-envelope-phase-stable pulses at 2.1 μm carrier wavelength, from a three-stage optical parametric chirped-pulse amplifier system, pumped by an optically synchronized 1.6 ps Yb:YAG thin disk laser. A chirped periodically poled lithium niobate crystal is used to generate the ultrabroad spectrum needed for a 1.5 cycle pulse through difference frequency mixing of spectrally broadened pulse from a Ti:sapphire amplifier. It will be an ideal tool for producing isolated attosecond pulses with high photon energies.
Nature | 2016
Annkatrin Sommer; Elisabeth Bothschafter; Shunsuke A. Sato; Clemens Jakubeit; Tobias Latka; Olga Razskazovskaya; Hanieh Fattahi; Michael Jobst; Wolfgang Schweinberger; Vahe Shirvanyan; Vladislav S. Yakovlev; Reinhard Kienberger; Kazuhiro Yabana; Nicholas Karpowicz; Martin Schultze; Ferenc Krausz
Electric-field-induced charge separation (polarization) is the most fundamental manifestation of the interaction of light with matter and a phenomenon of great technological relevance. Nonlinear optical polarization produces coherent radiation in spectral ranges inaccessible by lasers and constitutes the key to ultimate-speed signal manipulation. Terahertz techniques have provided experimental access to this important observable up to frequencies of several terahertz. Here we demonstrate that attosecond metrology extends the resolution to petahertz frequencies of visible light. Attosecond polarization spectroscopy allows measurement of the response of the electronic system of silica to strong (more than one volt per ångström) few-cycle optical (about 750 nanometres) fields. Our proof-of-concept study provides time-resolved insight into the attosecond nonlinear polarization and the light-matter energy transfer dynamics behind the optical Kerr effect and multi-photon absorption. Timing the nonlinear polarization relative to the driving laser electric field with sub-30-attosecond accuracy yields direct quantitative access to both the reversible and irreversible energy exchange between visible-infrared light and electrons. Quantitative determination of dissipation within a signal manipulation cycle of only a few femtoseconds duration (by measurement and ab initio calculation) reveals the feasibility of dielectric optical switching at clock rates above 100 terahertz. The observed sub-femtosecond rise of energy transfer from the field to the material (for a peak electric field strength exceeding 2.5 volts per ångström) in turn indicates the viability of petahertz-bandwidth metrology with a solid-state device.
Optics Express | 2012
Alexander Schwarz; Moritz Ueffing; Yunpei Deng; Xun Gu; Hanieh Fattahi; Thomas Metzger; Marcus Ossiander; Ferenc Krausz; Reinhard Kienberger
The development of new high power laser sources tends toward optical parametric chirped pulse amplification (OPCPA) in recent years. One of the difficulties in OPCPA is the the temporal overlap between pump and seed pulses. In this work we characterize our timing jitter on a single-shot basis using spectrally resolved cross-correlation in combination with a position sensitive detector. A commercial beam stabilization is adapted to actively enhance temporal overlap. This delay-stabilizer reduces the RMS jitter from σ = 127 fs down to σ = 24 fs. The enhanced temporal overlap is demonstrated in our frontend and we propose the scheme to be applicable in many optically synchronized high-repetition-rate OPCPA systems.
Optics Letters | 2017
Thomas Nubbemeyer; Martin Kaumanns; Moritz Ueffing; Martin Gorjan; Ayman Alismail; Hanieh Fattahi; Jonathan Brons; Oleg Pronin; Helena G. Barros; Zsuzsanna Major; Thomas Metzger; Dirk Sutter; Ferenc Krausz
We report on a laser system based on thin-disk technology and chirped pulse amplification, providing output pulse energies of 200 mJ at a 5 kHz repetition rate. The amplifier contains a ring-type cavity and two thin Yb:YAG disks, each pumped by diode laser systems providing up to 3.5 kW power at a 969 nm wavelength. The average output power of more than 1 kW is delivered in an excellent output beam characterized by M2=1.1. The output pulses are compressed to 1.1 ps at full power with a pair of dielectric gratings.
Optics Letters | 2016
Hanieh Fattahi; Ayman Alismail; Haochuang Wang; Jonathan Brons; Oleg Pronin; Theresa Buberl; Lenard Vamos; Gunnar Arisholm; Abdallah M. Azzeer; Ferenc Krausz
We report a 100 W, 20 mJ, 1-ps, all-Yb:YAG thin-disk regenerative amplifier seeded by a microjoule-level Yb:YAG thin-disk Kerr-lens mode-locked oscillator. The regenerative amplifier is implemented in a chirped pulse amplification system and operates at an ambient temperature in air, delivering ultrastable output pulses at a 5 kHz repetition rate and with a root mean square power noise value of less than 0.5%. Second harmonic generation of the amplifiers output in a 1.5 mm-thick BBO crystal results in more than 70 W at 515 nm, making the system an attractive source for pumping optical parametric chirped pulse amplifiers in the visible and near-infrared spectral ranges.
Optics Express | 2012
Hanieh Fattahi; Catherine Y. Teisset; Oleg Pronin; Atsushi Sugita; Roswitha Graf; Vladimir Pervak; Xun Gu; Thomas Metzger; Zsuzsanna Major; Ferenc Krausz; Alexander Apolonski
We report on an active synchronization between two independent mode-locked lasers using a combined electronic-optical feedback. With this scheme, seed pulses at MHz repetition rate were amplified in a non-collinear optical parametric chirped pulse amplifier (OPCPA). The amplifier was seeded with stretched 1.5 nJ pulses from a femtosecond Ti:Sapphire oscillator, while pumped with the 1 ps, 2.9 µJ frequency-doubled output of an Yb:YAG thin-disk oscillator. The residual timing jitter between the two oscillators was suppressed to 120 fs (RMS), allowing for an efficient and broadband amplification at 11.5 MHz to a pulse energy of 700 nJ and an average power of 8 W. First compression experiment with 240 nJ amplified pulse energy resulted in a pulse duration of ~10 fs.
Optics Express | 2016
Hanieh Fattahi; Haochuan Wang; Ayman Alismail; Gunnar Arisholm; Vladimir Pervak; Abdallah M. Azzeer; Ferenc Krausz
We report on the generation of a multi-octave, phase-stable continuum from the output of a Yb:YAG regenerative amplifier delivering 1-ps pulses with randomly varying carrier-envelope phase (CEP). The intrinsically CEP-stable spectral continuum spans from 450 nm to beyond 2500 nm, covering a spectral range of about 0.6 PHz. The generated coherent broadband light carries an energy of 4 μJ, which can be scaled to higher values if required. The system has been designed and is ideally suited for seeding broadband parametric amplifiers and multichannel synthesizers pumped by picosecond Yb:YAG amplifiers, obviating the need for active timing synchronization required in previous approaches. The presented concept paves the way to cost-effective, reliable all-Yb:YAG single-cycle sources with terawatt peak-power and tens-of-Watts average power.
Optics Letters | 2013
Hanieh Fattahi; Alexander Schwarz; Sabine Keiber; Nicholas Karpowicz
We present experimental observations and corresponding numerical simulations illustrating the difference-frequency generation of mid-infrared radiation using few-cycle near-infrared-to-visible pulses, which yields conversion efficiencies above 12% in beta-barium borate crystal. Type I and type II phase-matching are shown to yield qualitatively different intensity-scaling behavior, with the former showing higher overall efficiency, especially with the addition of a zero-order wave plate for modifying the polarization state of the pulse, and the latter having a better stability of the spectrum versus input intensity.
Optics Express | 2016
Tatiana V. Amotchkina; Hanieh Fattahi; Yurij. A. Pervak; Michael K. Trubetskov; Vladimir Pervak
We report on design, production and characterization of an extremely broadband multilayer beamsplitter, covering wavelength range from 0.67 - 2.6 µm. The group delay dispersion has small oscillations in the above mentioned working range. We used a new algorithm with floating constants allowing us to obtain a smooth and near constant GDD. The optical element based on the beamsplitter is used for dividing a low-energy super-octave spectrum into several sub-spectral regions which are later amplified and coherently combined.
Contemporary Physics | 2016
Hanieh Fattahi
This paper reviews the revolutionary development of ultra-short, multi-TW laser pulse generation made possible by current laser technology. The design of the unified laser architecture discussed in this paper, based on the synthesis of ultrabroadband optical parametric chirped-pulse amplifiers, promises to provide powerful light transients with electromagnetic forces engineerable on the electron time scale. By coherent combination of multiple amplifiers operating in different wavelength ranges, pulses with wavelength spectra extending from less than 1 m to more than 10 m, with sub-cycle duration at unprecedented peak and average power levels can be generated. It is shown theoretically that these light transients enable the efficient generation of attosecond X-ray pulses with photon flux sufficient to image, for the first time, picometre-attosecond trajectories of electrons, by means of X-ray diffraction and record the electron dynamics by attosecond spectroscopy. The proposed system leads to a tool with sub-atomic spatio-temporal resolution for studying different processes deep inside matter.