Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zsuzsanna Major is active.

Publication


Featured researches published by Zsuzsanna Major.


Nature Physics | 2009

Laser -driven soft-X-ray undulator source

M. Fuchs; Raphael Weingartner; Antonia Popp; Zsuzsanna Major; Stefan Becker; Jens Osterhoff; Isabella Cortrie; Benno Zeitler; Rainer Hörlein; George D. Tsakiris; U. Schramm; Tom P. Rowlands-Rees; Simon M. Hooker; Dietrich Habs; Ferenc Krausz; Stefan Karsch; Florian Grüner

High-intensity X-ray sources such as synchrotrons and free-electron lasers need large particle accelerators to drive them. The demonstration of a synchrotron X-ray source that uses a laser-driven particle accelerator could widen the availability of intense X-rays for research in physics, materials science and biology. Synchrotrons and free-electron lasers are the most powerful sources of X-ray radiation. They constitute invaluable tools for a broad range of research1; however, their dependence on large-scale radiofrequency electron accelerators means that only a few of these sources exist worldwide. Laser-driven plasma-wave accelerators2,3,4,5,6,7,8,9,10 provide markedly increased accelerating fields and hence offer the potential to shrink the size and cost of these X-ray sources to the university-laboratory scale. Here, we demonstrate the generation of soft-X-ray undulator radiation with laser-plasma-accelerated electron beams. The well-collimated beams deliver soft-X-ray pulses with an expected pulse duration of ∼10 fs (inferred from plasma-accelerator physics). Our source draws on a 30-cm-long undulator11 and a 1.5-cm-long accelerator delivering stable electron beams10 with energies of ∼210 MeV. The spectrum of the generated undulator radiation typically consists of a main peak centred at a wavelength of ∼18 nm (fundamental), a second peak near ∼9 nm (second harmonic) and a high-energy cutoff at ∼7 nm. Magnetic quadrupole lenses11 ensure efficient electron-beam transport and demonstrate an enabling technology for reproducible generation of tunable undulator radiation. The source is scalable to shorter wavelengths by increasing the electron energy. Our results open the prospect of tunable, brilliant, ultrashort-pulsed X-ray sources for small-scale laboratories.


New Journal of Physics | 2007

GeV-scale electron acceleration in a gas-filled capillary discharge waveguide

Stefan Karsch; Jens Osterhoff; Antonia Popp; T. P. Rowlands-Rees; Zsuzsanna Major; M. Fuchs; Benjamin Marx; Rainer Hörlein; Karl Schmid; Laszlo Veisz; Stefan Becker; U. Schramm; Bernhard Hidding; Georg Pretzler; Dietrich Habs; Florian Grüner; Ferenc Krausz; Simon M. Hooker

We report experimental results on laser-driven electron acceleration with low divergence. The electron beam was generated by focussing 750 mJ, 42 fs laser pulses into a gas-filled capillary discharge waveguide at electron densities in the range between 10 18 and 10 19 cm 3 . Quasi-monoenergetic electron bunches with energies as high as 500 MeV have been detected, with features reaching up to 1 GeV, albeit with large shot-to-shot fluctuations. A more stable regime with higher bunch charge (20-45 pC) and less energy (200-300 MeV) could also be observed. The beam divergence and the pointing stability are around or below 1 mrad and 8 mrad, respectively. These findings are consistent with self-injection of electrons into a breaking plasma wave.


Optics Express | 2011

High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers

Sandro Klingebiel; Christoph Wandt; Christoph Skrobol; Izhar Ahmad; Sergei A. Trushin; Zsuzsanna Major; Ferenc Krausz; Stefan Karsch

We present a chirped pulse amplification (CPA) system based on diode-pumped Yb:YAG. The stretched ns-pulses are amplified and have been compressed to less than 900 fs with an energy of 200 mJ and a repetition rate of 10 Hz. This system is optically synchronized with a broadband seed laser and therefore ideally suited for pumping optical parametric chirped pulse amplification (OPCPA) stages on a ps-timescale.


Optics Letters | 2014

800-fs, 330-μJ pulses from a 100-W regenerative Yb: YAG thin-disk amplifier at 300 kHz and THz generation in LiNbO3

Waldemar Schneider; Andrey Ryabov; Cs. Lombosi; Thomas Metzger; Zsuzsanna Major; J. A. Fülöp; Peter Baum

Yb:YAG thin-disk lasers offer extraordinary output power, but systems delivering femtosecond pulses at a repetition rate of hundreds of kilohertz are scarce, even though this regime is ideal for ultrafast electron diffraction, coincidence imaging, attosecond science, and terahertz (THz) spectroscopy. Here we describe a regenerative Yb:YAG amplifier based on thin-disk technology, producing 800-fs pulses at a repetition rate adjustable between 50 and 400 kHz. The key design elements are a short regenerative cavity and fast-switching Pockels cell. The average output power is 130 W before the compressor and 100 W after compression, which at 300 kHz corresponds to pulse energies of 430 and 330 μJ, respectively. This is sufficient for a wide range of nonlinear conversions and broadening/compression schemes. As a first application, we use optical rectification in LiNbO₃ to produce 30-nJ single-cycle THz pulses with 6 W pump power. The electric field exceeds 10  kV/cm at a central frequency of 0.3 THz, suitable for driving structural dynamics or controlling electron beams.


Optics Express | 2009

Chirped-pulse amplification of laser pulses with dispersive mirrors

Volodymyr Pervak; Izhar Ahmad; Sergei A. Trushin; Zsuzsanna Major; Alexander Apolonskiy; Stefan Karsch; Ferenc Krausz

We report a novel implementation of chirped-pulse amplification (CPA) by dominantly using dispersive multilayer mirrors for chirp control. Our prototyp dispersive-mirror (DMC) compressor has been designed for a kHz Ti:sapphire amplifier and yielded--in a proof-of-concept study--millijoule-energy, sub-20-fs, 790-nm laser pulses with an overall throughput of approximately 90% and unprecedented spatio-temporal quality. Dispersive-mirror-based CPA permits a dramatic simplification of high-power lasers and affords promise for their advancement to shorter pulse durations, higher peak powers, and higher average powers with user-friendly systems.


Optics Express | 2012

Broadband amplification by picosecond OPCPA in DKDP pumped at 515 nm

Christoph Skrobol; Izhar Ahmad; Sandro Klingebiel; Christoph Wandt; Sergei A. Trushin; Zsuzsanna Major; Ferenc Krausz; Stefan Karsch

On the quest towards reaching petawatt-scale peak power light pulses with few-cycle duration, optical parametric chirped pulse amplification (OPCPA) pumped on a time scale of a few picoseconds represents a very promising route. Here we present an experimental demonstration of few-ps OPCPA in DKDP, in order to experimentally verify the feasibility of the scheme. Broadband amplification was observed in the wavelength range of 830-1310 nm. The amplified spectrum supports two optical cycle pulses, at a central wavelength of ~920 nm, with a pulse duration of 6.1 fs (FWHM). The comparison of the experimental results with our numerical calculations of the OPCPA process showed good agreement. These findings confirm the reliability of our theoretical modelling, in particular with respect to the design for further amplification stages, scaling the output peak powers to the petawatt scale.


Optics Letters | 2008

Generation of 220 mJ nanosecond pulses at a 10 Hz repetition rate with excellent beam quality in a diode-pumped Yb:YAG MOPA system

Christoph Wandt; Sandro Klingebiel; Mathias Siebold; Zsuzsanna Major; Joachim Hein; Ferenc Krausz; Stefan Karsch

A novel all-diode-pumped master oscillator power amplifier system based on Yb:YAG crystal rods has been developed. It consists of a Q-switched oscillator delivering 3 mJ, 6.4 ns pulses at a 10 Hz repetition rate and an additional four-pass amplifier, which boosts the output energy to 220 mJ, while a close to TEM(00) beam quality could be observed. Additionally a simulation of the amplification was written that allows for further scaling considerations.


Optics Express | 2012

Experimental and theoretical investigation of timing jitter inside a stretcher-compressor setup

Sandro Klingebiel; Izhar Ahmad; Christoph Wandt; Christoph Skrobol; Sergei A. Trushin; Zsuzsanna Major; Ferenc Krausz; Stefan Karsch

In an optically synchronized short-pulse optical-parametric chirped-pulse amplification (OPCPA) system, we observe a few-100 fs-scale timing jitter. With an active timing stabilization system slow fluctuations are removed and the timing jitter can be reduced to 100 fs standard deviation (Std). As the main source for the timing fluctuations we could identify air turbulence in the stretcher-compressor setup inside the chirped pulse amplification (CPA) pump chain. This observation is supported by theoretical investigation of group delay changes for angular deviations occurring between the parallel gratings of a compressor or stretcher, as they can be introduced by air turbulence.


Optics Letters | 2017

1 kW, 200 mJ picosecond thin-disk laser system

Thomas Nubbemeyer; Martin Kaumanns; Moritz Ueffing; Martin Gorjan; Ayman Alismail; Hanieh Fattahi; Jonathan Brons; Oleg Pronin; Helena G. Barros; Zsuzsanna Major; Thomas Metzger; Dirk Sutter; Ferenc Krausz

We report on a laser system based on thin-disk technology and chirped pulse amplification, providing output pulse energies of 200 mJ at a 5 kHz repetition rate. The amplifier contains a ring-type cavity and two thin Yb:YAG disks, each pumped by diode laser systems providing up to 3.5 kW power at a 969 nm wavelength. The average output power of more than 1 kW is delivered in an excellent output beam characterized by M2=1.1. The output pulses are compressed to 1.1 ps at full power with a pair of dielectric gratings.


Optics Express | 2012

Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification

Hanieh Fattahi; Catherine Y. Teisset; Oleg Pronin; Atsushi Sugita; Roswitha Graf; Vladimir Pervak; Xun Gu; Thomas Metzger; Zsuzsanna Major; Ferenc Krausz; Alexander Apolonski

We report on an active synchronization between two independent mode-locked lasers using a combined electronic-optical feedback. With this scheme, seed pulses at MHz repetition rate were amplified in a non-collinear optical parametric chirped pulse amplifier (OPCPA). The amplifier was seeded with stretched 1.5 nJ pulses from a femtosecond Ti:Sapphire oscillator, while pumped with the 1 ps, 2.9 µJ frequency-doubled output of an Yb:YAG thin-disk oscillator. The residual timing jitter between the two oscillators was suppressed to 120 fs (RMS), allowing for an efficient and broadband amplification at 11.5 MHz to a pulse energy of 700 nJ and an average power of 8 W. First compression experiment with 240 nJ amplified pulse energy resulted in a pulse duration of ~10 fs.

Collaboration


Dive into the Zsuzsanna Major's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge