Hannelore Maes
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hannelore Maes.
Autophagy | 2010
Michael Dewaele; Hannelore Maes; Patrizia Agostinis
Mounting evidence suggests that reactive oxygen species (ROS) are multifaceted signalling molecules implicated in a variety of cellular programs during physiological as well as pathological conditions. Recently, ROS produced endogenously, by deranged metabolism of cancer cells, or exogenously, by ROS-generating drugs, have been shown to promote macroautophagy, a lysosomal pathway of self-degradation with essential prosurvival functions. Several molecular aspects of the modulation of autophagy pathways by ROS have been revealed in the past years and it is now clear that these processes are mutually linked and play a crucial role in cancer progression and in response to cancer therapeutics. In this review we address the molecular mechanisms underlying the activation of autophagy pathways by ROS and focus on the role of autophagy in cancer cells responding to ROS-producing agents, which are utilized as a therapeutic modality to kill cancer cells.
Trends in Molecular Medicine | 2013
Hannelore Maes; Noemi Rubio; Abhishek D. Garg; Patrizia Agostinis
Autophagy, the major lysosomal pathway for recycling intracellular components including whole organelles, is emerging as a key process modulating tumorigenesis, tumor-stroma interactions, and cancer therapy. Research over the past decade has highlighted a context-dependent and dynamic role for autophagy in cancer: it is tumor suppressive in the early stages of cancer development, but fuels the growth of established tumors. Likewise, the stimulation of autophagy in response to therapeutics can contextually favor or weaken chemoresistance and antitumor immunity. From a therapeutic perspective, understanding whether, when, and how autophagy can be harnessed to kill cancer cells remains challenging. In this review, we discuss new connections that reveal the role of autophagy in shaping tumor-stroma interaction during carcinogenesis and in the context of anticancer treatments.
Cell Death and Disease | 2017
Hannelore Maes; S Van Eygen; Dmitri V. Krysko; Peter Vandenabeele; K Nys; K Rillaerts; Abhishek D. Garg; Tom Verfaillie; Patrizia Agostinis
BNIP3 is an atypical BH3-only member of the BCL-2 family of proteins with reported pro-death as well as pro-autophagic and cytoprotective functions, depending on the type of stress and cellular context. In line with this, the role of BNIP3 in cancer is highly controversial and increased BNIP3 levels in cancer patients have been linked with both good as well as poor prognosis. In this study, using small hairpin RNA (shRNA) lentiviral transduction to stably knockdown BNIP3 (BNIP3-shRNA) expression levels in melanoma cells, we show that BNIP3 supports cancer cell survival and long-term clonogenic growth. Although BNIP3-shRNA increased mitochondrial mass and baseline levels of reactive oxygen species production, which are features associated with aggressive cancer cell behavior, it also prevented cell migration and completely abolished the ability to form a tubular-like network on matrigel, a hallmark of vasculogenic mimicry (VM). We found that this attenuated aggressive behavior of these melanoma cells was underscored by severe changes in cell morphology and remodeling of the actin cytoskeleton associated with loss of BNIP3. Indeed, BNIP3-silenced melanoma cells displayed enhanced formation of actin stress fibers and membrane ruffles, while lamellopodial protrusions and filopodia, tight junctions and adherens junctions were reduced. Moreover, loss of BNIP3 resulted in re-organization of focal adhesion sites associated with increased levels of phosphorylated focal adhesion kinase. Remarkably, BNIP3 silencing led to a drop of the protein levels of the integrin-associated protein CD47 and its downstream signaling effectors Rac1 and Cdc42. These observations underscore that BNIP3 is required to maintain steady-state levels of intracellular complexes orchestrating the plasticity of the actin cytoskeleton, which is integral to cell migration and other vital processes stimulating cancer progression. All together these results unveil an unprecedented pro-tumorigenic role of BNIP3 driving melanoma cell’s aggressive features, like migration and VM.
PLOS ONE | 2013
Jasper Wouters; Marguerite Stas; Lies Gremeaux; Olivier Govaere; Anke Van den broeck; Hannelore Maes; Patrizia Agostinis; Tania Roskams; Joost van den Oord; Hugo Vankelecom
Melanoma remains the most lethal skin cancer, mainly because of high resistance to therapy. Side population (SP) cells are found in many types of cancer and are usually enriched in therapy-resistant as well as tumorigenic cells. Here, we identified a Hoechst dye-effluxing SP in a large series of human melanoma samples representing different progression phases. The SP size did not change with disease stage but was correlated with the prognostic “Breslow’s depth” in the primary (cutaneous) tumors. When injected into immunodeficient mice, the SP generated larger tumors than the bulk “main population” (MP) melanoma cells in two consecutive generations, and showed tumorigenic capacity at lower cell numbers than the MP. In addition, the SP reconstituted the heterogeneous composition of the human A375 melanoma cell line, and its clonogenic activity was 2.5-fold higher than that of the MP. Gene-expression analysis revealed upregulated expression in the melanoma SP (versus the MP) of genes associated with chemoresistance and anti-apoptosis. Consistent with these molecular characteristics, the SP increased in proportion when A375 cells were exposed to the melanoma standard chemotherapeutic agent dacarbazine, and to the aggravating condition of hypoxia. In addition, the SP showed enhanced expression of genes related to cell invasion and migration, as well as to putative (melanoma) cancer stem cells (CSC) including ABCB1 and JARID1B. ABCB1 immunoreactivity was detected in a number of tumor cells in human melanomas, and in particular in clusters at the invasive front of the primary tumors. Together, our findings support that the human melanoma SP is enriched in tumorigenic and chemoresistant capacity, considered key characteristics of CSC. The melanoma SP may therefore represent an interesting therapeutic target.
Molecular and Cellular Oncology | 2015
Abhishek D. Garg; Hannelore Maes; Alexander R. van Vliet; Patrizia Agostinis
The endoplasmic reticulum (ER) is at the center of a number of vital cellular processes such as cell growth, death, and differentiation, crosstalk with immune or stromal cells, and maintenance of proteostasis or homeostasis, and ER functions have implications for various pathologies including cancer. Recently, a number of major hallmarks of cancer have been delineated that are expected to facilitate the development of anticancer therapies. However, therapeutic induction of ER stress as a strategy to broadly target multiple hallmarks of cancer has been seldom discussed despite the fact that several primary or secondary ER stress-inducing therapies have been found to exhibit positive clinical activity in cancer patients. In the present review we provide a brief historical overview of the major discoveries and milestones in the field of ER stress biology with important implications for anticancer therapy. Furthermore, we comprehensively discuss possible strategies enabling the targeting of multiple hallmarks of cancer with therapy-induced ER stress.
Biochemical Pharmacology | 2015
Seamus J. Martin; Aleksandra M. Dudek-Peric; Hannelore Maes; Abhishek D. Garg; M. Gabrysiak; Seyma Demirsoy; Johannes V. Swinnen; Patrizia Agostinis
Vemurafenib (PLX4032), an inhibitor of BRAF(V600E), has demonstrated significant clinical anti-melanoma effects. However, the majority of treated patients develop resistance, due to a variety of molecular mechanisms including MAPK reactivation through MEK. The induction of a cancer cell death modality associated with danger-signalling resulting in surface mobilization of crucial damage-associated-molecular-patterns (DAMPs), e.g. calreticulin (CRT) and heat shock protein-90 (HSP90), from dying cells, is emerging to be crucial for therapeutic success. Both cell death and danger-signalling are modulated by autophagy, a key adaptation mechanism stimulated during melanoma progression. However, whether melanoma cell death induced by MAPK inhibition is associated with danger-signalling, and the reliance of these mechanisms on autophagy, has not yet been scrutinized. Using a panel of isogenic PLX4032-sensitive and resistant melanoma cell lines we show that PLX4032-induced caspase-dependent cell death and DAMPs exposure in the drug-sensitive cells, but failed to do so in the drug-resistant cells, displaying heightened MEK activation. MEK inhibitor, U0126, treatment sensitized PLX4032-resistant cells to death and re-established their danger-signalling capacity. Only melanoma cells exposing death-induced danger-signals were phagocytosed and induced DC maturation. Although the PLX4032-resistant melanoma cells displayed higher basal and drug-induced autophagy, compromising autophagy, pharmacologically or by ATG5 knockdown, was insufficient to re-establish their PLX4032 sensitivity. Interestingly, autophagy abrogation was particularly efficacious in boosting cell death and ecto-CRT/ecto-HSP90 in PLX4032-resistant cells upon blockage of MEK hyper-activation by U0126. Thus combination of MEK inhibitors with autophagy blockers may represent a novel treatment regime to increase both cell death and danger-signalling in Vemurafenib-resistant metastatic melanoma.
FEBS Journal | 2016
Hannelore Maes; David Olmeda; Maria S. Soengas; Patrizia Agostinis
A common feature of solid tumors is their ability to incite the formation of new blood and lymph vessels trough the processes of angiogenesis and lymphangiogenesis, respectively, to support tumor growth and favor metastatic dissemination. As a result of the lack of feedback regulatory control mechanisms or due to the exacerbated presence of pro‐angiogenic signals within the tumor microenvironment, the tumor endothelium receives continuous signals to sprout and develop, generating vessels that are structurally and functionally abnormal. An emerging mechanism playing a central role in shaping the tumor vasculature is the endothelial‐vesicular network that regulates trafficking/export and degradation of key signaling proteins and membrane receptors, including the vascular endothelial growth‐factor receptor‐2/3 and members of the Notch pathway. Here we will discuss recent evidence highlighting how vesicular trafficking mechanisms in endothelial cells contribute to pathological angiogenesis/lymphangiogenesis and can provide novel and exploitable targets in antiangiogenic therapies.
Frontiers in Oncology | 2016
Seyma Demirsoy; Shaun Martin; Hannelore Maes; Patrizia Agostinis
Melanoma has emerged as a paradigm of a highly aggressive and plastic cancer, capable to co-opt the tumor stroma in order to adapt to the hostile microenvironment, suppress immunosurveillance mechanisms, and disseminate. In particular, oncogene- and aneuploidy-driven dysregulations of proteostasis in melanoma cells impose a rewiring of central proteostatic processes, such as the heat shock and unfolded protein responses, autophagy, and the endo-lysosomal system, to avoid proteotoxicity. Research over the past decade has indicated that alterations in key nodes of these proteostasis pathways act in conjunction with crucial oncogenic drivers to increase intrinsic adaptations of melanoma cells against proteotoxic stress, modulate the high metabolic demand of these cancer cells and the interface with other stromal cells, through the heightened release of soluble factors or exosomes. Here, we overview and discuss how key proteostasis pathways and vesicular trafficking mechanisms are turned into vital conduits of melanoma progression, by supporting cancer cell’s adaptation to the microenvironment, limiting or modulating the ability to respond to therapy and fueling melanoma dissemination.
Autophagy | 2014
Hannelore Maes; Anna Kuchnio; Peter Carmeliet; Patrizia Agostinis
Chloroquine (CQ) is exploited in clinical trials as an autophagy blocker to potentiate anticancer therapy, but it is unknown if it solely acts by inhibiting cancer cell-autonomous autophagy. Our recent study shows that besides blocking cancer cell growth, CQ also affects endothelial cells (ECs) and promotes tumor vessel normalization. This vessel normalizing effect of CQ reduces tumor hypoxia, cancer cell intravasation, and metastasis, while improving the delivery and response to chemotherapy. By compromising autophagy in melanoma cells or using mice with a conditional knockout of ATG5 in ECs, we found that the favorable effects of CQ on the tumor vasculature do not rely on autophagy. CQ-induced vessel normalization relies mainly on altered endolysosomal trafficking and sustained NOTCH1 signaling in ECs. Remarkably these CQ-mediated effects are abrogated when tumors are grown in mice harboring EC-specific deletion of NOTCH1. The autophagy-independent vessel normalization by CQ leading to improved delivery and tumor response to chemotherapy further advocates its clinical use in combination with anticancer treatments.
Ecancermedicalscience | 2017
Ciska Verbaanderd; Hannelore Maes; Marco B.E. Schaaf; Vikas P. Sukhatme; Pan Pantziarka; Vidula Sukhatme; Patrizia Agostinis; Gauthier Bouche
Chloroquine (CQ) and hydroxychloroquine (HCQ) are well-known 4-aminoquinoline antimalarial agents. Scientific evidence also supports the use of CQ and HCQ in the treatment of cancer. Overall, preclinical studies support CQ and HCQ use in anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they are able to sensitise tumour cells to a variety of drugs, potentiating the therapeutic activity. Thus far, clinical results are mostly in favour of the repurposing of CQ. However, over 30 clinical studies are still evaluating the activity of both CQ and HCQ in different cancer types and in combination with various standard treatments. Interestingly, CQ and HCQ exert effects both on cancer cells and on the tumour microenvironment. In addition to inhibition of the autophagic flux, which is the most studied anti-cancer effect of CQ and HCQ, these drugs affect the Toll-like receptor 9, p53 and CXCR4-CXCL12 pathway in cancer cells. In the tumour stroma, CQ was shown to affect the tumour vasculature, cancer-associated fibroblasts and the immune system. The evidence reviewed in this paper indicates that both CQ and HCQ deserve further clinical investigations in several cancer types. Special attention about the drug (CQ versus HCQ), the dose and the schedule of administration should be taken in the design of new trials.