Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jasper Wouters is active.

Publication


Featured researches published by Jasper Wouters.


Nature | 2016

Melanoma addiction to the long non-coding RNA SAMMSON

Eleonora Leucci; Roberto Vendramin; Marco Spinazzi; Patrick Laurette; Mark Fiers; Jasper Wouters; Enrico Radaelli; Sven Eyckerman; Carina Leonelli; Katrien Vanderheyden; Aljosja Rogiers; Els Hermans; Pieter Baatsen; Stein Aerts; Frédéric Amant; Stefan Van Aelst; Joost van den Oord; Bart De Strooper; Irwin Davidson; Denis L. J. Lafontaine; Kris Gevaert; Jo Vandesompele; Pieter Mestdagh; Jean-Christophe Marine

Focal amplifications of chromosome 3p13–3p14 occur in about 10% of melanomas and are associated with a poor prognosis. The melanoma-specific oncogene MITF resides at the epicentre of this amplicon. However, whether other loci present in this amplicon also contribute to melanomagenesis is unknown. Here we show that the recently annotated long non-coding RNA (lncRNA) gene SAMMSON is consistently co-gained with MITF. In addition, SAMMSON is a target of the lineage-specific transcription factor SOX10 and its expression is detectable in more than 90% of human melanomas. Whereas exogenous SAMMSON increases the clonogenic potential in trans, SAMMSON knockdown drastically decreases the viability of melanoma cells irrespective of their transcriptional cell state and BRAF, NRAS or TP53 mutational status. Moreover, SAMMSON targeting sensitizes melanoma to MAPK-targeting therapeutics both in vitro and in patient-derived xenograft models. Mechanistically, SAMMSON interacts with p32, a master regulator of mitochondrial homeostasis and metabolism, to increase its mitochondrial targeting and pro-oncogenic function. Our results indicate that silencing of the lineage addiction oncogene SAMMSON disrupts vital mitochondrial functions in a cancer-cell-specific manner; this silencing is therefore expected to deliver highly effective and tissue-restricted anti-melanoma therapeutic responses.


Gut | 2014

Keratin 19: a key role player in the invasion of human hepatocellular carcinomas

Olivier Govaere; Mina Komuta; Johannes Berkers; Bart Spee; Carl Janssen; Francesca de Luca; Aezam Katoonizadeh; Jasper Wouters; Leon Van Kempen; Anne Durnez; Chris Verslype; Joery De Kock; Vera Rogiers; Leo A. van Grunsven; Baki Topal; Jacques Pirenne; Hugo Vankelecom; Frederik Nevens; Joost van den Oord; Massimo Pinzani; Tania Roskams

Objective Keratin (K)19, a biliary/hepatic progenitor cell (HPC) marker, is expressed in a subset of hepatocellular carcinomas (HCC) with poor prognosis. The underlying mechanisms driving this phenotype of K19-positive HCC remain elusive. Design Clinicopathological value of K19 was compared with EpCAM, and α-fetoprotein, in a Caucasian cohort of 242 consecutive patients (167 surgical specimens, 75 needle biopsies) with different underlying aetiologies. Using microarrays and microRNA profiling the molecular phenotype of K19-positive HCCs was identified. Clinical primary HCC samples were submitted to in vitro invasion assays and to side population analysis. HCC cell lines were transfected with synthetic siRNAs against KRT19 and submitted to invasion and cytotoxicity assays. Results In the cohort of surgical specimens, K19 expression showed the strongest correlation with increased tumour size (p<0.01), decreased tumour differentiation (p<0.001), metastasis (p<0.05) and microvascular invasion (p<0.001). The prognostic value of K19 was also confirmed in a set of 75 needle biopsies. Profiling showed that K19-positive HCCs highly express invasion-related/metastasis-related markers (eg, VASP, TACSTD2, LAMB1, LAMC2, PDGFRA), biliary/HPC markers (eg, CD133, GSTP1, NOTCH2, JAG1) and members of the miRNA family 200 (eg, miR-141, miR-200c). In vitro, primary human K19-positive tumour cells showed increased invasiveness, and reside in the chemoresistant side population. Functionally, K19/KRT19 knockdown results in reduced invasion, loss of invadopodia formation and decreased resistance to doxorubicin, 5-fluorouracil and sorafenib. Conclusions Giving the distinct invasive properties, the different molecular profile and the poor prognostic outcome, K19-positive HCCs should be considered as a seperate entity of HCCs.


PLOS ONE | 2013

Human pancreatic cancer contains a side population expressing cancer stem cell-associated and prognostic genes

Anke Van den broeck; Hugo Vankelecom; Wouter Van Delm; Lies Gremeaux; Jasper Wouters; Joke Allemeersch; Olivier Govaere; Tania Roskams; Baki Topal

In many types of cancers, a side population (SP) has been identified based on high efflux capacity, thereby enriching for chemoresistant cells as well as for candidate cancer stem cells (CSC). Here, we explored whether human pancreatic ductal adenocarcinoma (PDAC) contains a SP, and whether its gene expression profile is associated with chemoresistance, CSC and prognosis. After dispersion into single cells and incubation with Hoechst dye, we analyzed human PDAC resections specimens using flow cytometry (FACS). We identified a SP and main population (MP) in all human PDAC resection specimens (n = 52) analyzed, but detected immune (CD45+) and endothelial (CD31+) cells in this fraction together with tumor cells. The SP and MP cells, or more purified fractions depleted from CD31+/CD45+ cells (pSP and pMP), were sorted by FACS and subjected to whole-genome expression analysis. This revealed upregulation of genes associated with therapy resistance and of markers identified before in putative pancreatic CSC. pSP gene signatures of 32 or 10 up- or downregulated genes were developed and tested for discriminatory competence between pSP and pMP in different sets of PDAC samples. The prognostic value of the pSP genes was validated in a large independent series of PDAC patients (n = 78) using nCounter analysis of expression (in tumor versus surrounding pancreatic tissue) and Cox regression for disease-free and overall survival. Of these genes, expression levels of ABCB1 and CXCR4 were correlated with worse patient survival. Thus, our study for the first time demonstrates that human PDAC contains a SP. This tumor subpopulation may represent a valuable therapeutic target given its chemoresistance- and CSC-associated gene expression characteristics with potential prognostic value.


PLOS ONE | 2013

The Human Melanoma Side Population Displays Molecular and Functional Characteristics of Enriched Chemoresistance and Tumorigenesis

Jasper Wouters; Marguerite Stas; Lies Gremeaux; Olivier Govaere; Anke Van den broeck; Hannelore Maes; Patrizia Agostinis; Tania Roskams; Joost van den Oord; Hugo Vankelecom

Melanoma remains the most lethal skin cancer, mainly because of high resistance to therapy. Side population (SP) cells are found in many types of cancer and are usually enriched in therapy-resistant as well as tumorigenic cells. Here, we identified a Hoechst dye-effluxing SP in a large series of human melanoma samples representing different progression phases. The SP size did not change with disease stage but was correlated with the prognostic “Breslow’s depth” in the primary (cutaneous) tumors. When injected into immunodeficient mice, the SP generated larger tumors than the bulk “main population” (MP) melanoma cells in two consecutive generations, and showed tumorigenic capacity at lower cell numbers than the MP. In addition, the SP reconstituted the heterogeneous composition of the human A375 melanoma cell line, and its clonogenic activity was 2.5-fold higher than that of the MP. Gene-expression analysis revealed upregulated expression in the melanoma SP (versus the MP) of genes associated with chemoresistance and anti-apoptosis. Consistent with these molecular characteristics, the SP increased in proportion when A375 cells were exposed to the melanoma standard chemotherapeutic agent dacarbazine, and to the aggravating condition of hypoxia. In addition, the SP showed enhanced expression of genes related to cell invasion and migration, as well as to putative (melanoma) cancer stem cells (CSC) including ABCB1 and JARID1B. ABCB1 immunoreactivity was detected in a number of tumor cells in human melanomas, and in particular in clusters at the invasive front of the primary tumors. Together, our findings support that the human melanoma SP is enriched in tumorigenic and chemoresistant capacity, considered key characteristics of CSC. The melanoma SP may therefore represent an interesting therapeutic target.


Nature Methods | 2017

SCENIC: single-cell regulatory network inference and clustering

Sara Aibar; Thomas Moerman; Vân Anh Huynh-Thu; Hana Imrichova; Gert Hulselmans; Florian Rambow; Jean-Christophe Marine; Pierre Geurts; Jan Aerts; Joost van den Oord; Zeynep Kalender Atak; Jasper Wouters; Stein Aerts

We present SCENIC, a computational method for simultaneous gene regulatory network reconstruction and cell-state identification from single-cell RNA-seq data (http://scenic.aertslab.org). On a compendium of single-cell data from tumors and brain, we demonstrate that cis-regulatory analysis can be exploited to guide the identification of transcription factors and cell states. SCENIC provides critical biological insights into the mechanisms driving cellular heterogeneity.


British Journal of Dermatology | 2014

Epithelial-mesenchymal transition during invasion of cutaneous squamous cell carcinoma is paralleled by AKT activation.

Kathleen Barrette; S van Kelst; Jasper Wouters; Vivien Marasigan; Steffen Fieuws; Patrizia Agostinis; J. J. van den Oord; Marjan Garmyn

Epithelial–mesenchymal transition (EMT) is required for tumour invasion and dissemination to occur.


British Journal of Cancer | 2017

Expression profiling of budding cells in colorectal cancer reveals an EMT-like phenotype and molecular subtype switching.

Linde De Smedt; Sofie Palmans; Daan Andel; Olivier Govaere; Bram Boeckx; Dominiek Smeets; Eva Galle; Jasper Wouters; David Barras; Madeleine Suffiotti; Jeroen Dekervel; Thomas Tousseyn; Gert De Hertogh; Hans Prenen; Sabine Tejpar; Diether Lambrechts; Xavier Sagaert

Background:Tumour budding, described as the presence of single cells or small clusters of up to five tumour cells at the invasive margin, is established as a prognostic marker in colorectal carcinoma. In the present study, we aimed to investigate the molecular signature of tumour budding cells and the corresponding tumour bulk.Methods:Tumour bulk and budding areas were microdissected and processed for RNA-sequencing. As little RNA was obtained from budding cells, a special low-input mRNA library preparation protocol was used. Gene expression profiles of budding as compared with tumour bulk were investigated for established EMT signatures, consensus molecular subtype (CMS), gene set enrichment and pathway analysis.Results:A total of 296 genes were differentially expressed with an FDR <0.05 and a twofold change between tumour bulk and budding regions. Genes that were upregulated in the budding signature were mainly involved in cell migration and survival while downregulated genes were important for cell proliferation. Supervised clustering according to an established EMT gene signature categorised budding regions as EMT-positive, whereas tumour bulk was considered EMT-negative. Furthermore, a shift from CMS2 (epithelial) to CMS4 (mesenchymal) was observed as tumour cells transit from the tumour bulk to the budding regions.Conclusions:Tumour budding regions are characterised by a phenotype switch compared with the tumour bulk, involving the acquisition of migratory characteristics and a decrease in cell proliferation. In particular, most tumour budding signatures were EMT-positive and switched from an epithelial subtype (CMS2) in the tumour bulk to a mesenchymal subtype (CMS4) in budding cells.


BMC Medicine | 2017

Comprehensive DNA methylation study identifies novel progression-related and prognostic markers for cutaneous melanoma

Jasper Wouters; Miguel Vizoso; Anna Martínez-Cardús; F. Javier Carmona; Olivier Govaere; Teresa Laguna; Jesuchristopher Joseph; Peter Dynoodt; Claudia Aura; Mona Foth; Roy Cloots; Karin van den Hurk; Balázs Bálint; Ian Murphy; Enda W. McDermott; Kieran Sheahan; Karin Jirström; Björn Nodin; Girish Mallya-Udupi; Joost van den Oord; William M. Gallagher; Manel Esteller

BackgroundCutaneous melanoma is the deadliest skin cancer, with an increasing incidence and mortality rate. Currently, staging of patients with primary melanoma is performed using histological biomarkers such as tumor thickness and ulceration. As disruption of the epigenomic landscape is recognized as a widespread feature inherent in tumor development and progression, we aimed to identify novel biomarkers providing additional clinical information over current factors using unbiased genome-wide DNA methylation analyses.MethodsWe performed a comprehensive DNA methylation analysis during all progression stages of melanoma using Infinium HumanMethylation450 BeadChips on a discovery cohort of benign nevi (n = 14) and malignant melanoma from both primary (n = 33) and metastatic (n = 28) sites, integrating the DNA methylome with gene expression data. We validated the discovered biomarkers in three independent validation cohorts by pyrosequencing and immunohistochemistry.ResultsWe identified and validated biomarkers for, and pathways involved in, melanoma development (e.g., HOXA9 DNA methylation) and tumor progression (e.g., TBC1D16 DNA methylation). In addition, we determined a prognostic signature with potential clinical applicability and validated PON3 DNA methylation and OVOL1 protein expression as biomarkers with prognostic information independent of tumor thickness and ulceration.ConclusionsOur data underscores the importance of epigenomic regulation in triggering metastatic dissemination through the inactivation of central cancer-related pathways. Inactivation of cell-adhesion and differentiation unleashes dissemination, and subsequent activation of inflammatory and immune system programs impairs anti-tumoral defense pathways. Moreover, we identify several markers of tumor development and progression previously unrelated to melanoma, and determined a prognostic signature with potential clinical utility.


Pigment Cell & Melanoma Research | 2012

Gene expression changes in melanoma metastases in response to high-dose chemotherapy during isolated limb perfusion.

Jasper Wouters; Marguerite Stas; Olivier Govaere; Kathleen Van den Eynde; Hugo Vankelecom; Joost van den Oord

Despite recent advances in melanoma therapy, disseminated melanoma still lacks effective treatment, and recurrence of the tumor frequently occurs, even after high‐dose chemotherapy. The mechanisms responsible for this chemoresistance or for the formation of new relapses remain poorly understood. Using a human ‘model’, in which the isolated limb is perfused with high doses of the chemotherapeutic melphalan (ILP), we identified a five‐gene set (ATF3, CYR61, IER5, IL6, and PTGS2) of stress‐induced genes that was consistently upregulated after ILP in all in‐transit metastatic melanoma samples as well as in three melphalan‐treated melanoma cell lines. Early post‐ILP relapses retained these elevated expressions, whereas the expression of these genes returned to their original levels in late post‐ILP recurrences. In addition, we identified upregulation of these genes in the A375 cell line’s side population (SP) and melanospheres, established methods to enrich for candidate cancer stem cells (CSCs), which are considered chemoresistant and tumorigenic, and thus proposed to be responsible for tumor relapse. Our data identify an immediate and short‐term upregulation of early stress‐responsive genes that are potentially linked to chemoresistance and CSCs.


Journal of Clinical Investigation | 2017

Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma

Michael Olvedy; Julie C. Tisserand; Flavie Luciani; Bram Boeckx; Jasper Wouters; Sophie Lopez; Florian Rambow; Sara Aibar; Bernard Thienpont; Jasmine Barra; Corinna Köhler; Enrico Radaelli; Sophie Tartare-Deckert; Stein Aerts; Patrice Dubreuil; Joost van den Oord; Diether Lambrechts; Paulo De Sepulveda; Jean-Christophe Marine

Identification and functional validation of oncogenic drivers are essential steps toward advancing cancer precision medicine. Here, we have presented a comprehensive analysis of the somatic genomic landscape of the widely used BRAFV600E- and NRASQ61K-driven mouse models of melanoma. By integrating the data with publically available genomic, epigenomic, and transcriptomic information from human clinical samples, we confirmed the importance of several genes and pathways previously implicated in human melanoma, including the tumor-suppressor genes phosphatase and tensin homolog (PTEN), cyclin dependent kinase inhibitor 2A (CDKN2A), LKB1, and others. Importantly, this approach also identified additional putative melanoma drivers with prognostic and therapeutic relevance. Surprisingly, one of these genes encodes the tyrosine kinase FES. Whereas FES is highly expressed in normal human melanocytes, FES expression is strongly decreased in over 30% of human melanomas. This downregulation correlates with poor overall survival. Correspondingly, engineered deletion of Fes accelerated tumor progression in a BRAFV600E-driven mouse model of melanoma. Together, these data implicate FES as a driver of melanoma progression and demonstrate the potential of cross-species oncogenomic approaches combined with mouse modeling to uncover impactful mutations and oncogenic driver alleles with clinical importance in the treatment of human cancer.

Collaboration


Dive into the Jasper Wouters's collaboration.

Top Co-Authors

Avatar

Hugo Vankelecom

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar

Joost van den Oord

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Olivier Govaere

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Lies Gremeaux

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Marguerite Stas

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Anke Van den broeck

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Baki Topal

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Tania Roskams

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Patrizia Agostinis

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Hannelore Maes

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge