Hao Ming Chen
National Taiwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hao Ming Chen.
Nano Letters | 2013
Chong Liu; Jinyao Tang; Hao Ming Chen; Bin Liu; Peidong Yang
Artificial photosynthesis, the biomimetic approach to converting sunlights energy directly into chemical fuels, aims to imitate nature by using an integrated system of nanostructures, each of which plays a specific role in the sunlight-to-fuel conversion process. Here we describe a fully integrated system of nanoscale photoelectrodes assembled from inorganic nanowires for direct solar water splitting. Similar to the photosynthetic system in a chloroplast, the artificial photosynthetic system comprises two semiconductor light absorbers with large surface area, an interfacial layer for charge transport, and spatially separated cocatalysts to facilitate the water reduction and oxidation. Under simulated sunlight, a 0.12% solar-to-fuel conversion efficiency is achieved, which is comparable to that of natural photosynthesis. The result demonstrates the possibility of integrating material components into a functional system that mimics the nanoscopic integration in chloroplasts. It also provides a conceptual blueprint of modular design that allows incorporation of newly discovered components for improved performance.
Science Advances | 2016
Hong Bin Yang; Jianwei Miao; Sung-Fu Hung; Jiazang Chen; Hua Bing Tao; Xizu Wang; Liping Zhang; Rong Chen; Jiajian Gao; Hao Ming Chen; Liming Dai; Bin Liu
Doping of graphene with nitrogen imparted bifunctional electrocatalytic activities for efficient energy conversion and storage. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g−1, and a peak power density of 65 mW cm−2, which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance.
Angewandte Chemie | 2010
Hao Ming Chen; Chih Kai Chen; Yu Chuan Chang; Chi Wen Tsai; Ru-Shi Liu; Shu Fen Hu; Wen Sheng Chang; Kuei-Hsien Chen
Increasing demand for clean energy has motivated considerable effort to exploit the properties of various materials in photovoltaics and related solar-harvesting devices. Splitting of water by sunlight to generate hydrogen is one of the forms of energy production with the most potential. Metal oxides such as TiO2, ZnO, and WO3 with various morphologies have been investigated for use in splitting water. However, most of these metal oxides have large band gaps, which limit light absorption in the visible region and overall efficiency. To reduce the band gaps of nanostructured metal oxides, doping and utilization of transition metals, carbon, or nitrogen have been investigated. One possibility is the use of semiconductor nanocrystals, known as quantum dots (QDs), as an alternative to photosensitive dyes. Quantum dots generally offer various significant advantages over dyes. It was recently established that QDs generate multiple electron– hole pairs per photon, improving device efficiency. Quantum dot sensitized nanostructures are widely studied for use in solar cells. However, little work has been done on metal oxide and semiconductor QD-based composite structures for use in water-splitting nanodevices. To elucidate this fundamental issue, we examined a combination of CdTe QDs and ZnO nanowires for splitting water photoelectrochemically (Scheme 1). One-dimensional nanostructures offer the additional potential advantage of improved charge transport over zero-dimensional nanostructures such as nanocrystals. Additionally, the typical electron mobility in ZnO is 10–100 times higher than that in TiO2, so the electrical resistance is lower and the electron-transfer efficiency higher. However, since the overall water-splitting reaction is tough, sacrificial reagents are commonly adopted to evaluate the photocatalytic activity for water splitting. When the photocatalytic reaction is carried out in an aqueous solution that contains a reductant, electron donors, or hole scavengers such as sulfide ions or selenium ions, photogenerated holes irreversibly oxidize the reductant rather than the water. Employment of CdTe QDs in water splitting system has major advantages. CdTe with a more favorable conduction band energy (ECB= 1.0 V vs. NHE) can inject electrons into ZnO faster than CdSe (ECB= 0.6 V vs. NHE). In addition, monolayer deposition of CdTe QDs on the surface of ZnO nanowires would further improve the stability in electrochemical reaction, by avoiding anodic decomposition/corrosion of CdTe and thus enhancing the overall watersplitting performance. During the photoirradiation of CdTe, two reactions can be expected to dominate after initial charge separation [Eqs. (1) and (2)].
Journal of the American Chemical Society | 2013
Bin Liu; Hao Ming Chen; Chong Liu; Sean C. Andrews; Chris Hahn; Peidong Yang
Practical implementation of one-dimensional semiconductors into devices capable of exploiting their novel properties is often hindered by low product yields, poor material quality, high production cost, or overall lack of synthetic control. Here, we show that a molten-salt flux scheme can be used to synthesize large quantities of high-quality, single-crystalline TiO2 nanowires with controllable dimensions. Furthermore, in situ dopant incorporation of various transition metals allows for the tuning of optical, electrical, and catalytic properties. With this combination of control, robustness, and scalability, the molten-salt flux scheme can provide high-quality TiO2 nanowires to satisfy a broad range of application needs from photovoltaics to photocatalysis.
ACS Nano | 2012
Hao Ming Chen; Chih Kai Chen; Chih-Jung Chen; Liang-Chien Cheng; Pin Chieh Wu; Bo Han Cheng; You Zhe Ho; Ming Lun Tseng; Ying-Ya Hsu; Jyh-Fu Lee; Ru-Shi Liu; Din Ping Tsai
Artificial photosynthesis using semiconductors has been investigated for more than three decades for the purpose of transferring solar energy into chemical fuels. Numerous studies have revealed that the introduction of plasmonic materials into photochemical reaction can substantially enhance the photo response to the solar splitting of water. Until recently, few systematic studies have provided clear evidence concerning how plasmon excitation and which factor dominates the solar splitting of water in photovoltaic devices. This work demonstrates the effects of plasmons upon an Au nanostructure-ZnO nanorods array as a photoanode. Several strategies have been successfully adopted to reveal the mutually independent contributions of various plasmonic effects under solar irradiation. These have clarified that the coupling of hot electrons that are formed by plasmons and the electromagnetic field can effectively increase the probability of a photochemical reaction in the splitting of water. These findings support a new approach to investigating localized plasmon-induced effects and charge separation in photoelectrochemical processes, and solar water splitting was used herein as platform to explore mechanisms of enhancement of surface plasmon resonance.
Journal of the American Chemical Society | 2016
Hsin-Yi Wang; Sung-Fu Hung; Han-Yi Chen; Hao Ming Chen; Bin Liu
Spinel Co3O4, comprising two types of cobalt ions: one Co(2+) in the tetrahedral site (Co(2+)(Td)) and the other two Co(3+) in the octahedral site (Co(3+)(Oh)), has been widely explored as a promising oxygen evolution reaction (OER) catalyst for water electrolysis. However, the roles of two geometrical cobalt ions toward the OER have remained elusive. Here, we investigated the geometrical-site-dependent OER activity of Co3O4 catalyst by substituting Co(2+)(Td) and Co(3+)(Oh) with inactive Zn(2+) and Al(3+), respectively. Following a thorough in operando analysis by electrochemical impedance spectroscopy and X-ray absorption spectroscopy, it was revealed that Co(2+)Td site is responsible for the formation of cobalt oxyhydroxide (CoOOH), which acted as the active site for water oxidation.
Science Advances | 2015
Jianwei Miao; Fang-Xing Xiao; Hong Bin Yang; Si Yun Khoo; Jiazang Chen; Zhanxi Fan; Ying-Ya Hsu; Hao Ming Chen; Hua Zhang; Bin Liu
A flexible cloth-like electrode, which can efficiently split water to produce H2 at neutral pH, is successfully demonstrated. A unique functional electrode made of hierarchal Ni-Mo-S nanosheets with abundant exposed edges anchored on conductive and flexible carbon fiber cloth, referred to as Ni-Mo-S/C, has been developed through a facile biomolecule-assisted hydrothermal method. The incorporation of Ni atoms in Mo-S plays a crucial role in tuning its intrinsic catalytic property by creating substantial defect sites as well as modifying the morphology of Ni-Mo-S network at atomic scale, resulting in an impressive enhancement in the catalytic activity. The Ni-Mo-S/C electrode exhibits a large cathodic current and a low onset potential for hydrogen evolution reaction in neutral electrolyte (pH ~7), for example, current density of 10 mA/cm2 at a very small overpotential of 200 mV. Furthermore, the Ni-Mo-S/C electrode has excellent electrocatalytic stability over an extended period, much better than those of MoS2/C and Pt plate electrodes. Scanning and transmission electron microscopy, Raman spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy were used to understand the formation process and electrocatalytic properties of Ni-Mo-S/C. The intuitive comparison test was designed to reveal the superior gas-evolving profile of Ni-Mo-S/C over that of MoS2/C, and a laboratory-scale hydrogen generator was further assembled to demonstrate its potential application in practical appliances.
Journal of Materials Chemistry | 2012
Liang-Chien Cheng; Jing-Hong Huang; Hao Ming Chen; Tsung-Ching Lai; Kuang-Yu Yang; Ru-Shi Liu; Michael Hsiao; Chung-Hsuan Chen; Li-Jane Her; Din Ping Tsai
This work demonstrates a simple method for synthesizing a shape-controllable bimetallic gold/silver nanostructured material. Spiky star-shaped gold/silver nanoparticles are obtained by mixing HAuCl4, AgNO3 and ascorbic acid with shaking for 20 s. The wide range of star shapes and irregular quasi-spherical nanoparticles is tailored by tuning the ratio of metal precursors. The wavelengths absorbed by the nanoparticles can be tuned from visible light to near infrared by controlling their shape. To maintain the morphology of the nanoparticles, enhance their thermal stability and support their application in biological systems, modified chitosan was utilized for the properties and to keep the material well dispersed in solution in deionized water. The moderate concentration of modified chitosan capped bimetallic star-shaped nanoparticles not only ensured non-toxicity to normal cells and cancer cells, but also promoted high efficiency photothermal ablation of cancer cells. Ultimately, this nanotechnology-driven assay has huge potential for application in rapid synthesis, tunable absorption and non-cytotoxic photothermal therapy for the effective treatment of cancer.
Nature Communications | 2015
Ching-Wei Tung; Ying-Ya Hsu; Yen-Ping Shen; Yixin Zheng; Hwo-Shuenn Sheu; Yuan-Chung Cheng; Hao Ming Chen
Electrochemically converting water into oxygen/hydrogen gas is ideal for high-density renewable energy storage in which robust electrocatalysts for efficient oxygen evolution play crucial roles. To date, however, electrocatalysts with long-term stability have remained elusive. Here we report that single-crystal Co3O4 nanocube underlay with a thin CoO layer results in a high-performance and high-stability electrocatalyst in oxygen evolution reaction. An in situ X-ray diffraction method is developed to observe a strong correlation between the initialization of the oxygen evolution and the formation of active metal oxyhydroxide phase. The lattice of skin layer adapts to the structure of the active phase, which enables a reversible facile structural change that facilitates the chemical reactions without breaking the scaffold of the electrocatalysts. The single-crystal nanocube electrode exhibits stable, continuous oxygen evolution for >1,000 h. This robust stability is attributed to the complementary nature of defect-free single-crystal electrocatalyst and the reversible adapting layer.
Small | 2013
Hao Ming Chen; Chih Kai Chen; Ming Lun Tseng; Pin Chieh Wu; Chia Min Chang; Liang-Chien Cheng; Hsin Wei Huang; Ting Shan Chan; Ding-Wei Huang; Ru-Shi Liu; Din Ping Tsai
A new fabrication strategy in which Ag plasmonics are embedded in the interface between ZnO nanorods and a conducting substrate is experimentally demonstrated using a femtosecond-laser (fs-laser)-induced plasmonic ZnO/Ag photoelectrodes. This fs-laser fabrication technique can be applied to generate patternable plasmonic nanostructures for improving their effectiveness in hydrogen generation. Plasmonic ZnO/Ag nanostructure photoelectrodes show an increase in the photocurrent of a ZnO nanorod photoelectrodes by higher than 85% at 0.5 V. Both localized surface plasmon resonance in metal nanoparticles and plasmon polaritons propagating at the metal/semiconductor interface are available for improving the capture of sunlight and collecting charge carriers. Furthermore, in-situ X-ray absorption spectroscopy is performed to monitor the plasmonic-generating electromagnetic field upon the interface between ZnO/Ag nanostructures. This can reveal induced vacancies on the conduction band of ZnO, which allow effective separation of charge carriers and improves the efficiency of hydrogen generation. Plasmon-induced effects enhance the photoresponse simultaneously, by improving optical absorbance and facilitating the separation of charge carriers.