Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harald Husebye is active.

Publication


Featured researches published by Harald Husebye.


The EMBO Journal | 2006

Endocytic pathways regulate Toll‐like receptor 4 signaling and link innate and adaptive immunity

Harald Husebye; Øyvind Halaas; Harald Stenmark; Gro Tunheim; Øystein Sandanger; Bjarne Bogen; Andreas Brech; Eicke Latz; Terje Espevik

Immune responses are initiated when molecules of microbial origin are sensed by the Toll‐like receptors (TLRs). We now report the identification of essential molecular components for the trafficking of the lipopolysaccharide (LPS) receptor complex. LPS was endocytosed by a receptor‐mediated mechanism dependent on dynamin and clathrin and colocalized with TLR4 on early/sorting endosomes. TLR4 was ubiquitinated and associated with the ubiquitin‐binding endosomal sorting protein hepatocyte growth factor‐regulated tyrosine kinase substrate, Hrs. Inhibition of endocytosis and endosomal sorting increased LPS signaling. Finally, the LPS receptor complex was sorted to late endosomes/lysosomes for degradation and loading of associated antigens onto HLA class II molecules for presentation to CD4+ T cells. Our results show that endosomal trafficking of the LPS receptor complex is essential for signal termination and LPS‐associated antigen presentation, thus controlling both innate and adaptive immunity through TLR4.


Immunity | 2010

The Rab11a GTPase Controls Toll-like Receptor 4-Induced Activation of Interferon Regulatory Factor-3 on Phagosomes

Harald Husebye; Marie Hjelmseth Aune; Jørgen Stenvik; Eivind O. Samstad; Frode Miltzow Skjeldal; Øyvind Halaas; Nadra J. Nilsen; Harald Stenmark; Eicke Latz; Egil Lien; Tom Eirik Mollnes; Oddmund Bakke; Terje Espevik

Toll-like receptor 4 (TLR4) is indispensable for recognition of Gram-negative bacteria. We described a trafficking pathway for TLR4 from the endocytic recycling compartment (ERC) to E. coli phagosomes. We found a prominent colocalization between TLR4 and the small GTPase Rab11a in the ERC, and Rab11a was involved in the recruitment of TLR4 to phagosomes in a process requiring TLR4 signaling. Also, Toll-receptor-associated molecule (TRAM) and interferon regulatory factor-3 (IRF3) localized to E. coli phagosomes and internalization of E. coli was required for a robust interferon-β induction. Suppression of Rab11a reduced TLR4 in the ERC and on phagosomes leading to inhibition of the IRF3 signaling pathway induced by E. coli, whereas activation of the transcription factor NF-κB was unaffected. Moreover, Rab11a silencing reduced the amount of TRAM on phagosomes. Thus, Rab11a is an important regulator of TLR4 and TRAM transport to E. coli phagosomes thereby controlling IRF3 activation from this compartment.


Plant Physiology | 2002

Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis

Harald Husebye; Supachitra Chadchawan; Per Winge; Ole Petter Thangstad; Atle M. Bones

Thioglucoside glucohydrolase 1 (TGG1) is one of two known functional myrosinase enzymes in Arabidopsis. The enzyme catalyzes the hydrolysis of glucosinolates into compounds that are toxic to various microbes and herbivores. Transgenic Arabidopsis plants carrying β-glucuronidase and green fluorescent protein reporter genes fused to 0.5 or 2.5 kb of the TGG1 promoter region were used to study spatial promoter activity. Promoter activity was found to be highly specific and restricted to guard cells and distinct cells of the phloem. No promoter activity was detected in the root or seed. All guard cells show promoter activity. Positive phloem cells are distributed in a discontinuous pattern and occur more frequent in young tissues. Immunocytochemical localization of myrosinase in transverse and longitudinal sections of embedded material show that the TGG1 promoter activity reflects the position of the myrosinase enzyme. In the flower stalk, the myrosinase-containing phloem cells are located between phloem sieve elements and glucosinolate-rich S cells. Our results suggest a cellular separation of myrosinase enzyme and glucosinolate substrate, and that myrosinase is contained in distinct cells. We discuss the potential advantages of locating defense and communication systems to only a few specific cell types.


Journal of Leukocyte Biology | 2008

Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling; role of CD14 and CD36

Nadra J. Nilsen; Susanne Deininger; Unni Nonstad; Frode Miltzow Skjeldal; Harald Husebye; Dmitrii G. Rodionov; Sonja von Aulock; Thomas Hartung; Egil Lien; Oddmund Bakke; Terje Espevik

Lipoteichoic acid (LTA) is a central inducer of inflammatory responses caused by Gram‐positive bacteria, such as Staphylococcus aureus, via activation of TLR2. Localization of TLR2 in relation to its coreceptors may be important for function. This study explores the signaling, uptake, and trafficking pattern of LTA in relation to expression of TLR2 and its coreceptors CD36 and CD14 in human monocytes. We found TLR2 expressed in early endosomes, late endosomes/lysosomes, and in Rab‐11‐positive compartments but not in the Golgi apparatus or endoplasmic reticulum (ER). Rapid internalization of fluorescently labeled LTA was observed in human monocytes, colocalizing with markers for early and late endosomes, lysosomes, ER, and Golgi network. Blocking CD14 and CD36 with antibodies inhibited LTA binding and LTA‐induced TNF release from monocytes, emphasizing an important role for both molecules as coreceptors for TLR2. Importantly, blocking CD36 did not affect TNF release induced by N‐palmitoyl‐S‐[2,3‐bis(palmitoyloxy)‐(2R,S)‐propyl]‐(R)‐cysteinyl‐seryl‐(lysyl)3‐lysine or LPS. Expression of CD14 markedly enhanced LTA binding to the plasma membrane and also enhanced NF‐κB activation. LTA internalization, but not NF‐κB activation, was inhibited in Dynamin‐I K44A dominant‐negative transfectants, suggesting that LTA is internalized by receptor‐mediated endocytosis but that internalization is not required for signaling. In fact, immobilizing LTA and thereby inhibiting internalization resulted in enhanced TNF release from monocytes. Our results suggest that LTA signaling preferentially occurs at the plasma membrane, is independent of internalization, and is facilitated by CD36 and CD14 as coreceptors for TLR2.


Transgenic Research | 1996

The nuclear localization sequence of the SV40 T antigen promotes transgene uptake and expression in zebrafish embryo nuclei

Philippe Collas; Harald Husebye; Peter Aleström

We report luciferase expression in zebrafish embryos after cytoplasmic injection of low copy numbers of plasmid DNA coupled to the SV40 T antigen nuclear localization sequence (NLS). Binding of NLS to plasmid DNA (pCMVL) occurs at room temperature in 0.25m KCl, as assayed by gel retardation at molar ratios of NLS:pCMVL of at least 100:1. Luciferase expression is induced in 35% of embryos with as low as 103 NLS-bound pCMVL copies. With 104 copies, the proportion of expression increases from 6% at 0:1 to 70% 100:1 NLS:pCMVL (p<0.01). The beneficial effect of NLS is abolished at DNA concentrations promoting high frequencies of transgene expression without NLS. Regardless of the DNA concentration, the use of NLS does not affect embryo viability for at least up to 10 days: The specificity of NLS on luciferase expression was tested by using a nuclear import deficient reverse NLS peptide (revNLS). revNLS binds to pCMVL, causing gel retardation similarly to NLS, but does not promote transgene expression. Binding of equimolar amounts of revNLS and NLS to DNA reduces by 50% the beneficial effect of NLS on transgene expression. The results suggest efficient targeting of NLS-bound plasmid DNA to the nucleus, and subsequent enhanced uptake of DNA by the nucleus. The data suggest that the use of NLS may reduce the need for using elevated DNA copy numbers in some gene transfer applications.


Plant Molecular Biology | 2004

Cell Specific, Cross-Species Expression of Myrosinases in Brassica Napus, Arabidopsis Thaliana and Nicotiana Tabacum

Ole Petter Thangstad; Bodil Gilde; Supachitra Chadchawan; Martin Seem; Harald Husebye; Douglas Bradley; Atle M. Bones

A prototypical characteristic of the Brassicaceae is the presence of the myrosinase-glucosinolate system. Myrosinase, the only known S-glycosidase in plants, degrades glucosinolates, thereby initiating the formation of isothiocyanates, nitriles and other reactive products with biological activities. We have used myrosinase gene promoters from Brassica napusand Arabidopsis thaliana fused to the β-glucuronidase (GUS) reporter gene and introduced into Arabidopsis thaliana, Brassica napus and/or Nicotiana tabacum plants to compare and determine the cell types expressing the myrosinase genes and the GUS expression regulated by these promoters. The A. thalianaTGG1 promoter directs expression to guard cells and phloem myrosin cell idioblasts of transgenic A. thaliana plants. Expression from the same promoter construct in transgenic tobacco plants lacking the myrosinase enzyme system also directs expression to guard cells. The B. napusMyr1.Bn1 promoter directs a cell specific expression to idioblast myrosin cells of immature and mature seeds and myrosin cells of phloem of B. napus. In A. thaliana the B. napus promoter directs expression to guard cells similar to the expression pattern of TGG1. The Myr1.Bn1 signal peptide targets the gene product to the reticular myrosin grains of myrosin cells. Our results indicate that myrosinase gene promoters from Brassicaceae direct cell, organ and developmental specific expression in B. napus, A. thaliana and N. tabacum.


Plant Molecular Biology | 1993

The myrosinase (thioglucoside glucohydrolase) gene family in Brassicaceae

Ole Petter Thangstad; Per Winge; Harald Husebye; Atle M. Bones

The glucosinolate hydrolyzing enzymes myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1) are encoded by a multigene family consisting of two subgroups. The first two nuclear genes representing each of these two subgroups of the new gene family, Myr1.Bn1 and Myr2.Bn1, from Brassica napus have been cloned and sequenced. Based on conserved regions in cDNA of three species, PCR (polymerase chain reaction) primers were made, and used to amplify and characterize the structure of the myrosinase genes in seven species of Brassiceae. Southern hybridization analysis of PCR products and genomic DNA indicates that myrosinase is encoded by at least 14 genes in B. napus, with similar numbers in the other species of Brassicaceae investigated. The Myr1 gene cloned from B. napus has a 19 amino acid signal peptide and consists of 11 exons of sizes ranging from 54 to 256 bp and 10 introns of sizes from 75 to 229 bp. The Myr2 gene has a 20 amino acid signal peptide and consists of 12 exons ranging in size from 35 to 262 bp and 11 introns of sizes from 81 to 131 bp. The exons from the two genes have 83% homology at the amino acid level. The intron-exon splice sites are of GT..AG consensus type. The signal peptides and presence of sites for N-linked glycosylation, suggest transport and glycosylation through the ER-Golgi complex. The differences between the two genes are discussed on the basis of their predicted expression at different developmental stages in the plant. Both genes show homology to a conserved motif representing the glycosyl hydrolase family of enzymes.


The Journal of Infectious Diseases | 2010

Intracellular Mycobacterium avium Intersect Transferrin in the Rab11+ Recycling Endocytic Pathway and Avoid Lipocalin 2 Trafficking to the Lysosomal Pathway

Øyvind Halaas; Magnus Steigedal; Markus Haug; Jane Atesoh Awuh; Liv Ryan; Andreas Brech; Shintaro Sato; Harald Husebye; Gerard A. Cangelosi; Shizuo Akira; Roland K. Strong; Terje Espevik; Trude H. Flo

Iron is an essential nutrient for microbes, and many pathogenic bacteria depend on siderophores to obtain iron. The mammalian innate immunity protein lipocalin 2 (Lcn2; also known as neutrophil gelatinase-associated lipocalin, 24p3, or siderocalin) binds the siderophore carboxymycobactin, an essential component of the iron acquisition apparatus of mycobacteria. Here we show that Lcn2 suppressed growth of Mycobacterium avium in culture, and M. avium induced Lcn2 production from mouse macrophages. Lcn2 also had elevated levels and initially limited the growth of M. avium in the blood of infected mice but did not impede growth in tissues and during long-term infections. M. avium is an intracellular pathogen. Subcellular imaging of infected macrophages revealed that Lcn2 trafficked to lysosomes separate from M. avium, whereas transferrin was efficiently transported to the mycobacteria. Thus, mycobacteria seem to reside in the Rab11(+) endocytic recycling pathway, thereby retaining access to nutrition and avoiding endocytosed immunoproteins like Lcn2.


Journal of Biological Chemistry | 2015

A role for the adaptor proteins TRAM and TRIF in toll-like receptor 2 signaling

Nadra J. Nilsen; Gregory I. Vladimer; Jørgen Stenvik; M. Pontus A. Orning; Maria V. Zeid-Kilani; Marit Bugge; Bjarte Bergstroem; Joseph E. Conlon; Harald Husebye; Amy G. Hise; Katherine A. Fitzgerald; Terje Espevik; Egil Lien

Background: Toll-like receptor 2 (TLR2) mediates innate immune responses by recognizing microbial components. Results: TLR2-mediated induction of the chemokines Ccl4 and Ccl5 and interferon-β is impaired in macrophages lacking the signaling molecules TRAM, TRIF, TBK-1, IRF1, and IRF3. Conclusion: The TRAM/TRIF pathway is involved in TLR2 signaling. Significance: TLR signaling pathways determine the immune response mounted against infectious organisms. Toll-like receptors (TLRs) are involved in sensing invading microbes by host innate immunity. TLR2 recognizes bacterial lipoproteins/lipopeptides, and lipopolysaccharide activates TLR4. TLR2 and TLR4 signal via the Toll/interleukin-1 receptor adaptors MyD88 and MAL, leading to NF-κB activation. TLR4 also utilizes the adaptors TRAM and TRIF, resulting in activation of interferon regulatory factor (IRF) 3. Here, we report a new role for TRAM and TRIF in TLR2 regulation and signaling. Interestingly, we observed that TLR2-mediated induction of the chemokine Ccl5 was impaired in TRAM or TRIF deficient macrophages. Inhibition of endocytosis reduced Ccl5 release, and the data also suggested that TRAM and TLR2 co-localize in early endosomes, supporting the hypothesis that signaling may occur from an intracellular compartment. Ccl5 release following lipoprotein challenge additionally involved the kinase Tbk-1 and Irf3, as well as MyD88 and Irf1. Induction of Interferon-β and Ccl4 by lipoproteins was also partially impaired in cells lacking TRIF cells. Our results show a novel function of TRAM and TRIF in TLR2-mediated signal transduction, and the findings broaden our understanding of how Toll/interleukin-1 receptor adaptor proteins may participate in signaling downstream from TLR2.


BMC Genomics | 2002

In silico and in situ characterization of the zebrafish (Danio rerio) gnrh3 (sGnRH) gene

Jacob Torgersen; Rasoul Nourizadeh-Lillabadi; Harald Husebye; Peter Aleström

BackgroundGonadotropin releasing hormone (GnRH) is responsible for stimulation of gonadotropic hormone (GtH) in the hypothalamus-pituitary-gonadal axis (HPG). The regulatory mechanisms responsible for brain specificity make the promoter attractive for in silico analysis and reporter gene studies in zebrafish (Danio rerio).ResultsWe have characterized a zebrafish [Trp7, Leu8] or salmon (s) GnRH variant, gnrh 3. The gene includes a 1.6 Kb upstream regulatory region and displays the conserved structure of 4 exons and 3 introns, as seen in other species. An in silico defined enhancer at -976 in the zebrafish promoter, containing adjacent binding sites for Oct-1, CREB and Sp1, was predicted in 2 mammalian and 5 teleost GnRH promoters. Reporter gene studies confirmed the importance of this enhancer for cell specific expression in zebrafish. Interestingly the promoter of human GnRH-I, known as mammalian GnRH (mGnRH), was shown capable of driving cell specific reporter gene expression in transgenic zebrafish.ConclusionsThe characterized zebrafish Gnrh3 decapeptide exhibits complete homology to the Atlantic salmon (Salmo salar) GnRH-III variant. In silico analysis of mammalian and teleost GnRH promoters revealed a conserved enhancer possessing binding sites for Oct-1, CREB and Sp1. Transgenic and transient reporter gene expression in zebrafish larvae, confirmed the importance of the in silico defined zebrafish enhancer at -976. The capability of the human GnRH-I promoter of directing cell specific reporter gene expression in zebrafish supports orthology between GnRH-I and GnRH-III.

Collaboration


Dive into the Harald Husebye's collaboration.

Top Co-Authors

Avatar

Terje Espevik

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Øyvind Halaas

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Atle M. Bones

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Liv Ryan

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ole Petter Thangstad

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Nadra J. Nilsen

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas T. Golenbock

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Egil Lien

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Andreas Brech

Oslo University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge