Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harald J. Ruijssenaars is active.

Publication


Featured researches published by Harald J. Ruijssenaars.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14

Frank Koopman; Nick Wierckx; Johannes H. de Winde; Harald J. Ruijssenaars

The toxic fermentation inhibitors in lignocellulosic hydrolysates pose significant problems for the production of second-generation biofuels and biochemicals. Among these inhibitors, 5-(hydroxymethyl)furfural (HMF) and furfural are specifically notorious. In this study, we describe the complete molecular identification and characterization of the pathway by which Cupriavidus basilensis HMF14 metabolizes HMF and furfural. The identification of this pathway enabled the construction of an HMF and furfural-metabolizing Pseudomonas putida. The genetic information obtained furthermore enabled us to predict the HMF and furfural degrading capabilities of sequenced bacterial species that had not previously been connected to furanic aldehyde metabolism. These results pave the way for in situ detoxification of lignocellulosic hydrolysates, which is a major step toward improved efficiency of utilization of lignocellulosic feedstock.


Bioresource Technology | 2010

Efficient whole-cell biotransformation of 5-(hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid.

Frank Koopman; Nick Wierckx; Johannes H. de Winde; Harald J. Ruijssenaars

2,5-furandicarboxylic acid (FDCA) is a promising bio-based platform chemical that may serve as a green substitute for terephthalate in polyesters. Recently, a novel HMF/furfural oxidoreductase from Cupriavidus basilensis HMF14 was identified that converts 5-(hydroxymethyl)furfural (HMF) into FDCA. The hmfH gene encoding this oxidoreductase was introduced into Pseudomonas putida S12 and the resulting whole-cell biocatalyst was employed to produce FDCA from HMF. In fed-batch experiments using glycerol as the carbon source, 30.1 g l(-1) of FDCA was produced from HMF at a yield of 97%. FDCA was recovered from the culture broth as a 99.4% pure dry powder, at 76% recovery using acid precipitation and subsequent tetrahydrofuran extraction.


Applied and Environmental Microbiology | 2009

Bioproduction of p-Hydroxystyrene from Glucose by the Solvent-Tolerant Bacterium Pseudomonas putida S12 in a Two-Phase Water-Decanol Fermentation

Suzanne Verhoef; Nick Wierckx; R. G. Maaike Westerhof; Johannes H. de Winde; Harald J. Ruijssenaars

ABSTRACT Two solvent-tolerant Pseudomonas putida S12 strains, originally designed for phenol and p-coumarate production, were engineered for efficient production of p-hydroxystyrene from glucose. This was established by introduction of the genes pal and pdc encoding l-phenylalanine/l-tyrosine ammonia lyase and p-coumaric acid decarboxylase, respectively. These enzymes allow the conversion of the central metabolite l-tyrosine into p-hydroxystyrene, via p-coumarate. Degradation of the p-coumarate intermediate was prevented by inactivating the fcs gene encoding feruloyl-coenzyme A synthetase. The best-performing strain was selected and cultivated in the fed-batch mode, resulting in the formation of 4.5 mM p-hydroxystyrene at a yield of 6.7% (C-mol of p-hydroxystyrene per C-mol of glucose) and a maximum volumetric productivity of 0.4 mM h−1. At this concentration, growth and production were completely halted due to the toxicity of p-hydroxystyrene. Product toxicity was overcome by the application of a second phase of 1-decanol to extract p-hydroxystyrene during fed-batch cultivation. This resulted in a twofold increase of the maximum volumetric productivity (0.75 mM h−1) and a final total p-hydroxystyrene concentration of 21 mM, which is a fourfold improvement compared to the single-phase fed-batch cultivation. The final concentration of p-hydroxystyrene in the water phase was 1.2 mM, while a concentration of 147 mM (17.6 g liter−1) was obtained in the 1-decanol phase. Thus, a P. putida S12 strain producing the low-value compound phenol was successfully altered for the production of the toxic value-added compound p-hydroxystyrene.


Microbial Biotechnology | 2010

Hydrophobic substances induce water stress in microbial cells.

Prashanth Bhaganna; Rita J. M. Volkers; Andrew Bell; Kathrin Kluge; David J. Timson; John W. McGrath; Harald J. Ruijssenaars; John E. Hallsworth

Ubiquitous noxious hydrophobic substances, such as hydrocarbons, pesticides and diverse industrial chemicals, stress biological systems and thereby affect their ability to mediate biosphere functions like element and energy cycling vital to biosphere health. Such chemically diverse compounds may have distinct toxic activities for cellular systems; they may also share a common mechanism of stress induction mediated by their hydrophobicity. We hypothesized that the stressful effects of, and cellular adaptations to, hydrophobic stressors operate at the level of wateru2003:u2003macromolecule interactions. Here, we present evidence that: (i) hydrocarbons reduce structural interactions within and between cellular macromolecules, (ii) organic compatible solutes – metabolites that protect against osmotic and chaotrope‐induced stresses – ameliorate this effect, (iii) toxic hydrophobic substances induce a potent form of water stress in macromolecular and cellular systems, and (iv) the stress mechanism of, and cellular responses to, hydrophobic substances are remarkably similar to those associated with chaotrope‐induced water stress. These findings suggest that it may be possible to devise new interventions for microbial processes in both natural environments and industrial reactors to expand microbial tolerance of hydrophobic substances, and hence the biotic windows for such processes.


Applied and Environmental Microbiology | 2008

Engineering Pseudomonas putida S12 for Efficient Utilization of d-Xylose and l-Arabinose

Jean-Paul Meijnen; Johannes H. de Winde; Harald J. Ruijssenaars

ABSTRACT The solvent-tolerant bacterium Pseudomonas putida S12 was engineered to utilize xylose as a substrate by expressing xylose isomerase (XylA) and xylulokinase (XylB) from Escherichia coli. The initial yield on xylose was low (9% [g CDW g substrate−1], where CDW is cell dry weight), and the growth rate was poor (0.01 h−1). The main cause of the low yield was the oxidation of xylose into the dead-end product xylonate by endogenous glucose dehydrogenase (Gcd). Subjecting the XylAB-expressing P. putida S12 to laboratory evolution yielded a strain that efficiently utilized xylose (yield, 52% [g CDW g xylose−1]) at a considerably improved growth rate (0.35 h−1). The high yield could be attributed in part to Gcd inactivity, whereas the improved growth rate may be connected to alterations in the primary metabolism. Surprisingly, without any further engineering, the evolved d-xylose-utilizing strain metabolized l-arabinose as efficiently as d-xylose. Furthermore, despite the loss of Gcd activity, the ability to utilize glucose was not affected. Thus, a P. putida S12-derived strain was obtained that efficiently utilizes the three main sugars present in lignocellulosic hydrolysate: glucose, xylose, and arabinose. This strain will form the basis for a platform host for the efficient production of biochemicals from renewable feedstock.


Applied Microbiology and Biotechnology | 2011

Microbial degradation of furanic compounds: biochemistry, genetics, and impact.

Nick Wierckx; Frank Koopman; Harald J. Ruijssenaars; Johannes H. de Winde

Microbial metabolism of furanic compounds, especially furfural and 5-hydroxymethylfurfural (HMF), is rapidly gaining interest in the scientific community. This interest can largely be attributed to the occurrence of toxic furanic aldehydes in lignocellulosic hydrolysates. However, these compounds are also widespread in nature and in human processed foods, and are produced in industry. Although several microorganisms are known to degrade furanic compounds, the variety of species is limited mostly to Gram-negative aerobic bacteria, with a few notable exceptions. Furanic aldehydes are highly toxic to microorganisms, which have evolved a wide variety of defense mechanisms, such as the oxidation and/or reduction to the furanic alcohol and acid forms. These oxidation/reduction reactions constitute the initial steps of the biological pathways for furfural and HMF degradation. Furfural degradation proceeds via 2-furoic acid, which is metabolized to the primary intermediate 2-oxoglutarate. HMF is converted, via 2,5-furandicarboxylic acid, into 2-furoic acid. The enzymes in these HMF/furfural degradation pathways are encoded by eight hmf genes, organized in two distinct clusters in Cupriavidus basilensis HMF14. The organization of the five genes of the furfural degradation cluster is highly conserved among microorganisms capable of degrading furfural, while the three genes constituting the initial HMF degradation route are organized in a highly diverse manner. The genetic and biochemical characterization of the microbial metabolism of furanic compounds holds great promises for industrial applications such as the biodetoxifcation of lignocellulosic hydrolysates and the production of value-added compounds such as 2,5-furandicarboxylic acid.


Journal of Bacteriology | 2008

Transcriptome Analysis of a Phenol-Producing Pseudomonas putida S12 Construct: Genetic and Physiological Basis for Improved Production

Nick Wierckx; Hendrik Ballerstedt; Jan A. M. de Bont; Johannes H. de Winde; Harald J. Ruijssenaars; Jan Wery

The unknown genetic basis for improved phenol production by a recombinant Pseudomonas putida S12 derivative bearing the tpl (tyrosine-phenol lyase) gene was investigated via comparative transcriptomics, nucleotide sequence analysis, and targeted gene disruption. We show upregulation of tyrosine biosynthetic genes and possibly decreased biosynthesis of tryptophan caused by a mutation in the trpE gene as the genetic basis for the enhanced phenol production. In addition, several genes in degradation routes connected to the tyrosine biosynthetic pathway were upregulated. This either may be a side effect that negatively affects phenol production or may point to intracellular accumulation of tyrosine or its intermediates. A number of genes identified by the transcriptome analysis were selected for targeted disruption in P. putida S12TPL3. Physiological and biochemical examination of P. putida S12TPL3 and these mutants led to the conclusion that the metabolic flux toward tyrosine in P. putida S12TPL3 was improved to such an extent that the heterologous tyrosine-phenol lyase enzyme had become the rate-limiting step in phenol biosynthesis.


Microbial Biotechnology | 2010

Isolation and characterization of Cupriavidus basilensis HMF14 for biological removal of inhibitors from lignocellulosic hydrolysate

Nick Wierckx; Frank Koopman; Luaine Bandounas; Johannes H. de Winde; Harald J. Ruijssenaars

The formation of toxic fermentation inhibitors such as furfural and 5‐hydroxy‐2‐methylfurfural (HMF) during acid (pre‐)treatment of lignocellulose, calls for the efficient removal of these compounds. Lignocellulosic hydrolysates can be efficiently detoxified biologically with microorganisms that specifically metabolize the fermentation inhibitors while preserving the sugars for subsequent use by the fermentation host. The bacterium Cupriavidus basilensis HMF14 was isolated from enrichment cultures with HMF as the sole carbon source and was found to metabolize many of the toxic constituents of lignocellulosic hydrolysate including furfural, HMF, acetate, formate and a host of aromatic compounds. Remarkably, this microorganism does not grow on the most abundant sugars in lignocellulosic hydrolysates: glucose, xylose and arabinose. In addition, C. basilensis HMF14 can produce polyhydroxyalkanoates. Cultivation of C. basilensis HMF14 on wheat straw hydrolysate resulted in the complete removal of furfural, HMF, acetate and formate, leaving the sugar fraction intact. This unique substrate profile makes C. basilensis HMF14 extremely well suited for biological removal of inhibitors from lignocellulosic hydrolysates prior to their use as fermentation feedstock.


Applied Microbiology and Biotechnology | 2011

Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy

Jean-Paul Meijnen; Suzanne Verhoef; Ashwin A. Briedjlal; Johannes H. de Winde; Harald J. Ruijssenaars

The key precursors for p-hydroxybenzoate production by engineered Pseudomonas putida S12 are phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P), for which the pentose phosphate (PP) pathway is an important source. Since PP pathway fluxes are typically low in pseudomonads, E4P and PEP availability is a likely bottleneck for aromatics production which may be alleviated by stimulating PP pathway fluxes via co-feeding of pentoses in addition to glucose or glycerol. As P. putida S12 lacks the natural ability to utilize xylose, the xylose isomerase pathway from E. coli was introduced into the p-hydroxybenzoate producing strain P. putida S12palB2. The initially inefficient xylose utilization was improved by evolutionary selection after which the p-hydroxybenzoate production was evaluated. Even without xylose-co-feeding, p-hydroxybenzoate production was improved in the evolved xylose-utilizing strain, which may indicate an intrinsically elevated PP pathway activity. Xylose co-feeding further improved the p-hydroxybenzoate yield when co-fed with either glucose or glycerol, up to 16.3xa0Cmol% (0.1xa0g p-hydroxybenzoate/g substrate). The yield improvements were most pronounced with glycerol, which probably related to the availability of the PEP precursor glyceraldehyde-3-phosphate (GAP). Thus, it was demonstrated that the production of aromatics such as p-hydroxybenzoate can be improved by co-feeding different carbon sources via different and partially artificial pathways. Moreover, this approach opens new perspectives for the efficient production of (fine) chemicals from renewable feedstocks such as lignocellulose that typically has a high content of both glucose and xylose and (crude) glycerol.


Applied and Environmental Microbiology | 2009

Establishment of oxidative D-xylose metabolism in Pseudomonas putida S12

Jean-Paul Meijnen; Johannes H. de Winde; Harald J. Ruijssenaars

ABSTRACT The oxidative d-xylose catabolic pathway of Caulobacter crescentus, encoded by the xylXABCD operon, was expressed in the gram-negative bacterium Pseudomonas putida S12. This engineered transformant strain was able to grow on d-xylose as a sole carbon source with a biomass yield of 53% (based on g [dry weight] g d-xylose−1) and a maximum growth rate of 0.21 h−1. Remarkably, most of the genes of the xylXABCD operon appeared to be dispensable for growth on d-xylose. Only the xylD gene, encoding d-xylonate dehydratase, proved to be essential for establishing an oxidative d-xylose catabolic pathway in P. putida S12. The growth performance on d-xylose was, however, greatly improved by coexpression of xylXA, encoding 2-keto-3-deoxy-d-xylonate dehydratase and α-ketoglutaric semialdehyde dehydrogenase, respectively. The endogenous periplasmic glucose dehydrogenase (Gcd) of P. putida S12 was found to play a key role in efficient oxidative d-xylose utilization. Gcd activity not only contributes to d-xylose oxidation but also prevents the intracellular accumulation of toxic catabolic intermediates which delays or even eliminates growth on d-xylose.

Collaboration


Dive into the Harald J. Ruijssenaars's collaboration.

Top Co-Authors

Avatar

Johannes H. de Winde

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Koopman

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jan Wery

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jan A. M. de Bont

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Luaine Bandounas

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rita J. M. Volkers

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Suzanne Verhoef

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge