Rita J. M. Volkers
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rita J. M. Volkers.
Microbial Biotechnology | 2010
Prashanth Bhaganna; Rita J. M. Volkers; Andrew Bell; Kathrin Kluge; David J. Timson; John W. McGrath; Harald J. Ruijssenaars; John E. Hallsworth
Ubiquitous noxious hydrophobic substances, such as hydrocarbons, pesticides and diverse industrial chemicals, stress biological systems and thereby affect their ability to mediate biosphere functions like element and energy cycling vital to biosphere health. Such chemically diverse compounds may have distinct toxic activities for cellular systems; they may also share a common mechanism of stress induction mediated by their hydrophobicity. We hypothesized that the stressful effects of, and cellular adaptations to, hydrophobic stressors operate at the level of water : macromolecule interactions. Here, we present evidence that: (i) hydrocarbons reduce structural interactions within and between cellular macromolecules, (ii) organic compatible solutes – metabolites that protect against osmotic and chaotrope‐induced stresses – ameliorate this effect, (iii) toxic hydrophobic substances induce a potent form of water stress in macromolecular and cellular systems, and (iv) the stress mechanism of, and cellular responses to, hydrophobic substances are remarkably similar to those associated with chaotrope‐induced water stress. These findings suggest that it may be possible to devise new interventions for microbial processes in both natural environments and industrial reactors to expand microbial tolerance of hydrophobic substances, and hence the biotic windows for such processes.
Genetics | 2015
Owen Thompson; L. Basten Snoek; Harm Nijveen; Mark G. Sterken; Rita J. M. Volkers; Rachel Brenchley; Arjen van’t Hof; R.P.J. Bevers; Andrew R. Cossins; Itai Yanai; Alex Hajnal; Tobias Schmid; Jaryn D. Perkins; David H. Spencer; Erik C. Andersen; Donald G. Moerman; LaDeana W. Hillier; Jan E. Kammenga; Robert H. Waterston
The Hawaiian strain (CB4856) of Caenorhabditis elegans is one of the most divergent from the canonical laboratory strain N2 and has been widely used in developmental, population, and evolutionary studies. To enhance the utility of the strain, we have generated a draft sequence of the CB4856 genome, exploiting a variety of resources and strategies. When compared against the N2 reference, the CB4856 genome has 327,050 single nucleotide variants (SNVs) and 79,529 insertion–deletion events that result in a total of 3.3 Mb of N2 sequence missing from CB4856 and 1.4 Mb of sequence present in CB4856 but not present in N2. As previously reported, the density of SNVs varies along the chromosomes, with the arms of chromosomes showing greater average variation than the centers. In addition, we find 61 regions totaling 2.8 Mb, distributed across all six chromosomes, which have a greatly elevated SNV density, ranging from 2 to 16% SNVs. A survey of other wild isolates show that the two alternative haplotypes for each region are widely distributed, suggesting they have been maintained by balancing selection over long evolutionary times. These divergent regions contain an abundance of genes from large rapidly evolving families encoding F-box, MATH, BATH, seven-transmembrane G-coupled receptors, and nuclear hormone receptors, suggesting that they provide selective advantages in natural environments. The draft sequence makes available a comprehensive catalog of sequence differences between the CB4856 and N2 strains that will facilitate the molecular dissection of their phenotypic differences. Our work also emphasizes the importance of going beyond simple alignment of reads to a reference genome when assessing differences between genomes.
Applied Microbiology and Biotechnology | 2010
Suzanne Verhoef; Hendrik Ballerstedt; Rita J. M. Volkers; Johannes H. de Winde; Harald J. Ruijssenaars
A transcriptomics and proteomics approach was employed to study the expression changes associated with p-hydroxybenzoate production by the engineered Pseudomonas putida strain S12palB1. To establish p-hydroxybenzoate production, phenylalanine-tyrosine ammonia lyase (pal/tal) was introduced to connect the tyrosine biosynthetic and p-coumarate degradation pathways. In agreement with the efficient p-hydroxybenzoate production, the tyrosine biosynthetic and p-coumarate catabolic pathways were upregulated. Also many transporters were differentially expressed, one of which—a previously uncharacterized multidrug efflux transporter with locus tags PP1271-PP1273—was found to be associated with p-hydroxybenzoate export. In addition to tyrosine biosynthesis, also tyrosine degradative pathways were upregulated. Eliminating the most prominent of these resulted in a 22% p-hydroxybenzoate yield improvement. Remarkably, the upregulation of genes contributing to p-hydroxybenzoate formation was much higher in glucose than in glycerol-cultured cells.
BMC Biology | 2013
Rita J. M. Volkers; L.B. Snoek; Caspara J van Hellenberg Hubar; Renata Coopman; Wei Chen; Wentao Yang; Mark G. Sterken; Hinrich Schulenburg; Bart P. Braeckman; Jan E. Kammenga
BackgroundAnalyzing and understanding the relationship between genotypes and phenotypes is at the heart of genetics. Research on the nematode Caenorhabditis elegans has been instrumental for unraveling genotype-phenotype relations, and has important implications for understanding the biology of mammals, but almost all studies, including forward and reverse genetic screens, are limited by investigations in only one canonical genotype. This hampers the detection and functional analysis of allelic variants, which play a key role in controlling many complex traits. It is therefore essential to explore the full potential of the natural genetic variation and evolutionary context of the genotype-phenotype map in wild C. elegans populations.ResultsWe used multiple wild C. elegans populations freshly isolated from local sites to investigate gene sequence polymorphisms and a multitude of phenotypes including the transcriptome, fitness, and behavioral traits. The genotype, transcriptome, and a number of fitness traits showed a direct link with the original site of the strains. The separation between the isolation sites was prevalent on all chromosomes, but chromosome V was the largest contributor to this variation. These results were supported by a differential food preference of the wild isolates for naturally co-existing bacterial species. Comparing polymorphic genes between the populations with a set of genes extracted from 19 different studies on gene expression in C. elegans exposed to biotic and abiotic factors, such as bacteria, osmotic pressure, and temperature, revealed a significant enrichment for genes involved in gene-environment interactions and protein degradation.ConclusionsWe found that wild C. elegans populations are characterized by gene-environment signatures, and we have unlocked a wealth of genotype-phenotype relations for the first time. Studying natural isolates provides a treasure trove of evidence compared with that unearthed by the current research in C. elegans, which covers only a diminutive part of the myriad of genotype-phenotype relations that are present in the wild.
Extremophiles | 2009
Rita J. M. Volkers; Hendrik Ballerstedt; Harald J. Ruijssenaars; Jan A. M. de Bont; Johannes H. de Winde; Jan Wery
Pseudomonas putida S12 is well known for its remarkable solvent tolerance. Transcriptomics analysis of this bacterium grown in toluene-containing chemostats revealed the differential expression of 253 genes. As expected, the genes encoding one of the major solvent tolerance mechanisms, the solvent efflux pump SrpABC and its regulatory genes srpRS were heavily up-regulated. The increased energy demand brought about by toluene stress was also reflected in transcriptional changes: genes involved in sugar storage were down-regulated whereas genes involved in energy generation such as isocitrate dehydrogenase and NADH dehydrogenases, were up-regulated in the presence of toluene. Several flagella-related genes were up-regulated and a large group of transport genes were down-regulated. In addition, a novel Pseudomonas-specific gene was identified to be involved in toluene tolerance of P. putida S12. This toluene-repressed gene, trgI, was heavily down-regulated immediately upon toluene exposure in batch cultures. The relationship of trgI with solvent tolerance was confirmed by the increased resistance to toluene shock and toluene induced lysis of trgI knock-out mutants. We propose that down-regulation of trgI plays a role in the first line of defence against solvents.
Scientific Reports | 2015
L.B. Snoek; Mark G. Sterken; Rita J. M. Volkers; M. Klatter; K.J. Bosman; R.P.J. Bevers; Joost A. G. Riksen; Geert Smant; Andrew R. Cossins; Jan E. Kammenga
Organismal development is the most dynamic period of the life cycle, yet we have only a rough understanding of the dynamics of gene expression during adolescent transition. Here we show that adolescence in Caenorhabditis elegans is characterized by a spectacular expression shift of conserved and highly polymorphic genes. Using a high resolution time series we found that in adolescent worms over 10,000 genes changed their expression. These genes were clustered according to their expression patterns. One cluster involved in chromatin remodelling showed a brief up-regulation around 50 h post-hatch. At the same time a spectacular shift in expression was observed. Sequence comparisons for this cluster across many genotypes revealed diversifying selection. Strongly up-regulated genes showed signs of purifying selection in non-coding regions, indicating that adolescence-active genes are constrained on their regulatory properties. Our findings improve our understanding of adolescent transition and help to eliminate experimental artefacts due to incorrect developmental timing.
Worm | 2014
S.W. Hoogstrate; Rita J. M. Volkers; Mark G. Sterken; Jan E. Kammenga; L.B. Snoek
The discovery of small RNA silencing pathways has greatly extended our knowledge of gene regulation. Small RNAs have been presumed to play a role in every field of biology because they affect many biological processes via regulation of gene expression and chromatin remodeling. Most well-known examples of affected processes are development, fertility, and maintenance of genome stability. Here we review the role of the three main endogenous small RNA silencing pathways in Caenorhabditis elegans: microRNAs, endogenous small interfering RNAs, and PIWI-interacting RNAs. After providing an entry-level overview on how these pathways function, we discuss research on other nematode species providing insight into the evolution of these small RNA pathways. In understanding the differences between the endogenous small RNA pathways and their evolution, a more comprehensive picture is formed of the functions and effects of small RNAs.
Molecular & Cellular Proteomics | 2016
Polina Kamkina; L. Basten Snoek; Jonas Grossmann; Rita J. M. Volkers; Mark G. Sterken; Michael Daube; Bernd Roschitzki; Claudia Fortes; Ralph Schlapbach; Alexander Roth; Christian von Mering; Michael O. Hengartner; Sabine P. Schrimpf; Jan E. Kammenga
Natural genetic variation is the raw material of evolution and influences disease development and progression. An important question is how this genetic variation translates into variation in protein abundance. To analyze the effects of the genetic background on gene and protein expression in the nematode Caenorhabditis elegans, we quantitatively compared the two genetically highly divergent wild-type strains N2 and CB4856. Gene expression was analyzed by microarray assays, and proteins were quantified using stable isotope labeling by amino acids in cell culture. Among all transcribed genes, we found 1,532 genes to be differentially transcribed between the two wild types. Of the total 3,238 quantified proteins, 129 proteins were significantly differentially expressed between N2 and CB4856. The differentially expressed proteins were enriched for genes that function in insulin-signaling and stress-response pathways, underlining strong divergence of these pathways in nematodes. The protein abundance of the two wild-type strains correlates more strongly than protein abundance versus transcript abundance within each wild type. Our findings indicate that in C. elegans only a fraction of the changes in protein abundance can be explained by the changes in mRNA abundance. These findings corroborate with the observations made across species.
PLOS ONE | 2015
Rita J. M. Volkers; L. Basten Snoek; Harald J. Ruijssenaars; Johannes H. de Winde
Pseudomonas putida S12 is exceptionally tolerant to various organic solvents. To obtain further insight into this bacterium’s primary defence mechanisms towards these potentially harmful substances, we studied its genome wide transcriptional response to sudden addition of toluene. Global gene expression profiles were monitored for 30 minutes after toluene addition. During toluene exposure, high oxygen-affinity cytochrome c oxidase is specifically expressed to provide for an adequate proton gradient supporting solvent efflux mechanisms. Concomitantly, the glyoxylate bypass route was up-regulated, to repair an apparent toluene stress-induced redox imbalance. A knock-out mutant of trgI, a recently identified toluene-repressed gene, was investigated in order to identify TrgI function. Remarkably, upon addition of toluene the number of differentially expressed genes initially was much lower in the trgI-mutant than in the wild-type strain. This suggested that after deletion of trgI cells were better prepared for sudden organic solvent stress. Before, as well as after, addition of toluene many genes of highly diverse functions were differentially expressed in trgI-mutant cells as compared to wild-type cells. This led to the hypothesis that TrgI may not only be involved in the modulation of solvent-elicited responses but in addition may affect basal expression levels of large groups of genes.
Environmental Microbiology Reports | 2010
Rita J. M. Volkers; Hendrik Ballerstedt; Johannes H. de Winde; Harald J. Ruijssenaars
Pseudomonas putida S12.49, a mutant stain of P. putida S12 that tolerates up to 20 mM benzene, was obtained by evolutionary selection. The genetic basis for the strongly enhanced benzene tolerance was investigated by proteome and transcriptome analysis. Indications were found that the highly benzene-tolerant phenotype is the resultant of multi-level systemic changes. The solvent extrusion pump SrpABC was constitutively expressed in P. putida S12.49, which could be attributed to the disruption of the srpS regulator gene by the indigenous mutator element ISS12. The occurrence of this and two additional transposition events was in good agreement with the increased transcriptional activity of transposase-encoding genes in strain S12.49. These observations suggested that transposition events are an important force driving the generation of the genetic diversity apparently required to obtain highly solvent-tolerant phenotypes. In addition, various expression responses relating to energy generation indicated system changes that accommodated the energy demand associated with the high-level expression of the proton-driven solvent extrusion pump. The relatively modest effect of a respiratory chain uncoupler on benzene tolerance in P. putida S12.49 indicated the involvement of an alternative, non-respiratory mechanism to maintain the proton gradient.