Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harald Jungnickel is active.

Publication


Featured researches published by Harald Jungnickel.


ALTEX-Alternatives to Animal Experimentation | 2013

Metabolomics in toxicology and preclinical research.

Tzutzuy Ramirez; Mardas Daneshian; Hennicke Kamp; Frédéric Y. Bois; Malcolm R. Clench; Muireann Coen; Beth Donley; Steven M. Fischer; Drew R. Ekman; Eric Fabian; Claude Guillou; Joachim Heuer; Helena T. Hogberg; Harald Jungnickel; Hector C. Keun; G. Krennrich; Eckart Krupp; Andreas Luch; Fozia Noor; E. Peter; Bjoern Riefke; Mark Seymour; Nigel Skinner; Lena Smirnova; Elwin Verheij; Silvia Wagner; Thomas Hartung; Bennard van Ravenzwaay; Marcel Leist

Metabolomics, the comprehensive analysis of metabolites in a biological system, provides detailed information about the biochemical/physiological status of a biological system, and about the changes caused by chemicals. Metabolomics analysis is used in many fields, ranging from the analysis of the physiological status of genetically modified organisms in safety science to the evaluation of human health conditions. In toxicology, metabolomics is the -omics discipline that is most closely related to classical knowledge of disturbed biochemical pathways. It allows rapid identification of the potential targets of a hazardous compound. It can give information on target organs and often can help to improve our understanding regarding the mode-of-action of a given compound. Such insights aid the discovery of biomarkers that either indicate pathophysiological conditions or help the monitoring of the efficacy of drug therapies. The first toxicological applications of metabolomics were for mechanistic research, but different ways to use the technology in a regulatory context are being explored. Ideally, further progress in that direction will position the metabolomics approach to address the challenges of toxicology of the 21st century. To address these issues, scientists from academia, industry, and regulatory bodies came together in a workshop to discuss the current status of applied metabolomics and its potential in the safety assessment of compounds. We report here on the conclusions of three working groups addressing questions regarding 1) metabolomics for in vitro studies 2) the appropriate use of metabolomics in systems toxicology, and 3) use of metabolomics in a regulatory context.


ACS Nano | 2011

Application of Laser Postionization Secondary Neutral Mass Spectrometry/Time-of-Flight Secondary Ion Mass Spectrometry in Nanotoxicology: Visualization of Nanosilver in Human Macrophages and Cellular Responses

Andrea Haase; Heinrich F. Arlinghaus; Jutta Tentschert; Harald Jungnickel; Philipp Graf; Alexandre Mantion; Felix Draude; S. Galla; Johanna Plendl; Mario E. Goetz; Admir Masic; Wolfgang Meier; Andreas F. Thünemann; Andreas Taubert; Andreas Luch

Silver nanoparticles (SNP) are the subject of worldwide commercialization because of their antimicrobial effects. Yet only little data on their mode of action exist. Further, only few techniques allow for visualization and quantification of unlabeled nanoparticles inside cells. To study SNP of different sizes and coatings within human macrophages, we introduce a novel laser postionization secondary neutral mass spectrometry (Laser-SNMS) approach and prove this method superior to the widely applied confocal Raman and transmission electron microscopy. With time-of-flight secondary ion mass spectrometry (TOF-SIMS) we further demonstrate characteristic fingerprints in the lipid pattern of the cellular membrane indicative of oxidative stress and membrane fluidity changes. Increases of protein carbonyl and heme oxygenase-1 levels in treated cells confirm the presence of oxidative stress biochemically. Intriguingly, affected phagocytosis reveals as highly sensitive end point of SNP-mediated adversity in macrophages. The cellular responses monitored are hierarchically linked, but follow individual kinetics and are partially reversible.


Journal of Physics: Conference Series | 2011

Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses

Andrea Haase; Jutta Tentschert; Harald Jungnickel; Philipp Graf; Alexandre Mantion; Felix Draude; Johanna Plendl; Mario E. Goetz; S. Galla; Admir Masic; A F Thuenemann; Andreas Taubert; Heinrich F. Arlinghaus; Andreas Luch

Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages.


Science of The Total Environment | 2015

Freshwater dispersion stability of PAA-stabilised cerium oxide nanoparticles and toxicity towards Pseudokirchneriella subcapitata

Andy M. Booth; Trond Røvik Størseth; Dag Altin; Anwar Ahniyaz; Harald Jungnickel; Peter Laux; Andreas Luch; Lisbet Sørensen

An aqueous dispersion of poly (acrylic acid)-stabilised cerium oxide (CeO₂) nanoparticles (PAA-CeO₂) was evaluated for its stability in a range of freshwater ecotoxicity media (MHRW, TG 201 and M7), with and without natural organic matter (NOM). In a 15 day dispersion stability study, PAA-CeO₂ did not undergo significant aggregation in any media type. Zeta potential varied between media types and was influenced by PAA-CeO₂ concentration, but remained constant over 15 days. NOM had no influence on PAA-CeO₂ aggregation or zeta potential. The ecotoxicity of the PAA-CeO₂ dispersion was investigated in 72 h algal growth inhibition tests using the freshwater microalgae Pseudokirchneriella subcapitata. PAA-CeO₂ EC₅₀ values for growth inhibition (GI; 0.024 mg/L) were 2-3 orders of magnitude lower than pristine CeO₂ EC₅₀ values reported in the literature. The concentration of dissolved cerium (Ce(3+)/Ce(4+)) in PAA-CeO₂ exposure suspensions was very low, ranging between 0.5 and 5.6 μg/L. Free PAA concentration in the exposure solutions (0.0096-0.0384 mg/L) was significantly lower than the EC10 growth inhibition (47.7 mg/L) value of pure PAA, indicating that free PAA did not contribute to the observed toxicity. Elemental analysis indicated that up to 38% of the total Cerium becomes directly associated with the algal cells during the 72 h exposure. TOF-SIMS analysis of algal cell wall compounds indicated three different modes of action, including a significant oxidative stress response to PAA-CeO₂ exposure. In contrast to pristine CeO₂ nanoparticles, which rapidly aggregate in standard ecotoxicity media, PAA-stabilised CeO₂ nanoparticles remain dispersed and available to water column species. Interaction of PAA with cell wall components, which could be responsible for the observed biomarker alterations, could not be excluded. This study indicates that the increased dispersion stability of PAA-CeO₂ leads to an increase in toxicity compared to pristine non-stabilised forms.


Environmental Science & Technology | 2016

Textile Functionalization and Its Effects on the Release of Silver Nanoparticles into Artificial Sweat.

Sandra Wagener; Nils Dommershausen; Harald Jungnickel; Peter Laux; Denise M. Mitrano; Bernd Nowack; Gregor Schneider; Andreas Luch

This study addresses the release of total silver (Ag) and silver nanoparticles (Ag-NPs) from textiles into artificial sweat, particularly considering the functionalization technology used in textile finishing. Migration experiments were conducted for four commercially available textiles and for six laboratory-prepared textiles. Two among these lab-prepared textiles represent materials in which Ag-NPs were embedded within the textile fibers (composites), whereas the other lab-prepared textiles contain Ag particles on the respective fiber surfaces (coatings). The results indicate a smaller release of total Ag from composites in comparison to surface-coated textiles. The particulate fraction determined within the artificial sweat was negligible for most textiles, meaning that the majority of the released Ag is present as dissolved Ag. It is also relevant to note that nanotextiles do not release more particulate Ag than conventional Ag textiles. The results rather indicate that the functionalization type is the most important parameter affecting the migration. Furthermore, after measuring different Ag-NP types in their pristine form with inductively coupled plasma mass spectrometry in the single particle mode, there is evidence that particle modifications, like surface coating, may also influence the dissolution behavior of the Ag-NPs in the sweat solutions. These factors are important when discussing the likelihood of consumer exposure.


NanoImpact | 2017

Biokinetics of nanomaterials: The role of biopersistence

Peter Laux; Christian Riebeling; Andy M. Booth; Joseph D. Brain; Josephine Brunner; Cristina Cerrillo; Otto Creutzenberg; Irina Estrela-Lopis; Thomas Gebel; Gunnar Johanson; Harald Jungnickel; Heiko Kock; Jutta Tentschert; Ahmed Tlili; Andreas Schäffer; Adriënne J.A.M. Sips; Robert A. Yokel; Andreas Luch

Nanotechnology risk management strategies and environmental regulations continue to rely on hazard and exposure assessment protocols developed for bulk materials, including larger size particles, while commercial application of nanomaterials (NMs) increases. In order to support and corroborate risk assessment of NMs for workers, consumers, and the environment it is crucial to establish the impact of biopersistence of NMs at realistic doses. In the future, such data will allow a more refined future categorization of NMs. Despite many experiments on NM characterization and numerous in vitro and in vivo studies, several questions remain unanswered including the influence of biopersistence on the toxicity of NMs. It is unclear which criteria to apply to characterize a NM as biopersistent. Detection and quantification of NMs, especially determination of their state, i.e., dissolution, aggregation, and agglomeration within biological matrices and other environments are still challenging tasks; moreover mechanisms of nanoparticle (NP) translocation and persistence remain critical gaps. This review summarizes the current understanding of NM biokinetics focusing on determinants of biopersistence. Thorough particle characterization in different exposure scenarios and biological matrices requires use of suitable analytical methods and is a prerequisite to understand biopersistence and for the development of appropriate dosimetry. Analytical tools that potentially can facilitate elucidation of key NM characteristics, such as ion beam microscopy (IBM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), are discussed in relation to their potential to advance the understanding of biopersistent NM kinetics. We conclude that a major requirement for future nanosafety research is the development and application of analytical tools to characterize NPs in different exposure scenarios and biological matrices.


Journal of Proteome Research | 2015

Pathway and time-resolved benzo[a]pyrene toxicity on Hepa1c1c7 cells at toxic and subtoxic exposure

Stefan Kalkhof; Franziska Dautel; Salvatore Loguercio; Sven Baumann; Saskia Trump; Harald Jungnickel; Wolfgang Otto; Susanne Rudzok; Sarah Potratz; Andreas Luch; Irina Lehmann; Andreas Beyer; Martin von Bergen

Benzo[a]pyrene (B[a]P) is an environmental contaminant mainly studied for its toxic/carcinogenic effects. For a comprehensive and pathway orientated mechanistic understanding of the effects directly triggered by a toxic (5 μM) or a subtoxic (50 nM) concentration of B[a]P or indirectly by its metabolites, we conducted time series experiments for up to 24 h to study the effects in murine hepatocytes. These cells rapidly take up and actively metabolize B[a]P, which was followed by quantitative analysis of the concentration of intracellular B[a]P and seven representative degradation products. Exposure with 5 μM B[a]P led to a maximal intracellular concentration of 1604 pmol/5 × 10(4) cells, leveling at 55 pmol/5 × 10(4) cells by the end of the time course. Changes in the global proteome (>1000 protein profiles) and metabolome (163 metabolites) were assessed in combination with B[a]P degradation. Abundance profiles of 236 (both concentrations), 190 (only 5 μM), and 150 (only 50 nM) proteins were found to be regulated in response to B[a]P in a time-dependent manner. At the endogenous metabolite level amino acids, acylcarnitines and glycerophospholipids were particularly affected by B[a]P. The comprehensive chemical, proteome and metabolomic data enabled the identification of effects on the pathway level in a time-resolved manner. So in addition to known alterations, also protein synthesis, lipid metabolism, and membrane dysfunction were identified as B[a]P specific effects.


Surface and Interface Analysis | 2014

Dual beam organic depth profiling using large argon cluster ion beams

Markus Holzweber; Alexander G. Shard; Harald Jungnickel; Andreas Luch; Wolfgang E. S. Unger

Argon cluster sputtering of an organic multilayer reference material consisting of two organic components, 4,4′-bis[N-(1-naphthyl-1-)-N-phenyl- amino]-biphenyl (NPB) and aluminium tris-(8-hydroxyquinolate) (Alq3), materials commonly used in organic light-emitting diodes industry, was carried out using time-of-flight SIMS in dual beam mode. The sample used in this study consists of a ∽400-nm-thick NPB matrix with 3-nm marker layers of Alq3 at depth of ∽50, 100, 200 and 300 nm. Argon cluster sputtering provides a constant sputter yield throughout the depth profiles, and the sputter yield volumes and depth resolution are presented for Ar-cluster sizes of 630, 820, 1000, 1250 and 1660 atoms at a kinetic energy of 2.5 keV. The effect of cluster size in this material and over this range is shown to be negligible.


Toxics | 2016

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS): A New Tool for the Analysis of Toxicological Effects on Single Cell Level

Harald Jungnickel; Peter Laux; Andreas Luch

Single cell imaging mass spectrometry opens up a complete new perspective for strategies in toxicological risk assessment and drug discovery. In particular, time-of-flight secondary ion mass spectrometry (ToF-SIMS) with its high spatial and depth resolution is becoming part of the imaging mass spectrometry toolbox used for single cell analysis. Recent instrumentation advancements in combination with newly developed cluster ion guns allow 3-dimensional reconstruction of single cells together with a spatially resolved compound location and quantification on nanoscale depth level. The exact location and quantification of a single compound or even of a set of compounds is no longer restricted to the two dimensional space within single cells, but is available for voxels, a cube-sized 3-dimensional space, rather than pixels. The information gathered from one voxel is further analysed using multivariate statistical methodology like maximum autocorrelation factors to co-locate the compounds of interest within intracellular organelles like nucleus, mitochondria or golgi apparatus. Furthermore, the cell membrane may be resolved, including adhering compounds and potential changes of the lipid patterns. The generated information can be used further for a first evaluation of intracellular target specifity of new drug candidates or for the toxicological risk assessment of environmental chemicals and their intracellular metabolites. Additionally, single cell lipidomics and metabolomics enable for the first time an in-depth understanding of the activation or inhibition of cellular biosynthesis and signalling pathways.


Science of The Total Environment | 2016

Time-of-flight secondary ion mass spectrometry (ToF-SIMS)-based analysis and imaging of polyethylene microplastics formation during sea surf simulation.

Harald Jungnickel; R. Pund; Jutta Tentschert; Philipp Reichardt; Peter Laux; H. Harbach; Andreas Luch

Plastic particles smaller than 5mm, so called microplastics have the capability to accumulate in rivers, lakes and the marine environment and therefore have begun to be considered in eco-toxicology and human health risk assessment. Environmental microplastic contaminants may originate from consumer products like body wash, tooth pastes and cosmetic products, but also from degradation of plastic waste; they represent a potential but unpredictable threat to aquatic organisms and possibly also to humans. We investigated exemplarily for polyethylene (PE), the most abundant constituent of microplastic particles in the environment, whether such fragments could be produced from larger pellets (2mm×6mm). So far only few analytical methods exist to identify microplastic particles smaller than 10μm, especially no imaging mass spectrometry technique. We used at first time-of-flight secondary ion mass spectrometry (ToF-SIMS) for analysis and imaging of small PE-microplastic particles directly in the model system Ottawa sand during exposure to sea surf simulation. As a prerequisite, a method for identification of PE was established by identification of characteristic ions for PE out of an analysis of grinded polymer samples. The method was applied onto Ottawa sand in order to investigate the influence of simulated environmental conditions on particle transformation. A severe degradation of the primary PE pellet surface, associated with the transformation of larger particles into smaller ones already after 14days of sea surf simulation, was observed. Within the subsequent period of 14days to 1month of exposure the number of detected smallest-sized particles increased significantly (50%) while the second smallest fraction increased even further to 350%. Results were verified using artificially degraded PE pellets and Ottawa sand.

Collaboration


Dive into the Harald Jungnickel's collaboration.

Top Co-Authors

Avatar

Andreas Luch

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Peter Laux

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Jutta Tentschert

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar

Andreas F. Thünemann

Bundesanstalt für Materialforschung und -prüfung

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Haase

Federal Institute for Risk Assessment

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin von Bergen

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar

Sarah Potratz

Federal Institute for Risk Assessment

View shared research outputs
Researchain Logo
Decentralizing Knowledge