Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harish Bhaskaran is active.

Publication


Featured researches published by Harish Bhaskaran.


Nature | 2014

An optoelectronic framework enabled by low-dimensional phase-change films.

Peiman Hosseini; C. David Wright; Harish Bhaskaran

The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states—amorphous and crystalline—in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young’s modulus. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent ‘smart’ glasses, ‘smart’ contact lenses and artificial retina devices.


Nature Nanotechnology | 2010

Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon

Harish Bhaskaran; Bernd Gotsmann; Abu Sebastian; Ute Drechsler; Michel Despont; Papot Jaroenapibal; Robert W. Carpick; Yun Chen; Kumar Sridharan

Understanding friction and wear at the nanoscale is important for many applications that involve nanoscale components sliding on a surface, such as nanolithography, nanometrology and nanomanufacturing. Defects, cracks and other phenomena that influence material strength and wear at macroscopic scales are less important at the nanoscale, which is why nanowires can, for example, show higher strengths than bulk samples. The contact area between the materials must also be described differently at the nanoscale. Diamond-like carbon is routinely used as a surface coating in applications that require low friction and wear because it is resistant to wear at the macroscale, but there has been considerable debate about the wear mechanisms of diamond-like carbon at the nanoscale because it is difficult to fabricate diamond-like carbon structures with nanoscale fidelity. Here, we demonstrate the batch fabrication of ultrasharp diamond-like carbon tips that contain significant amounts of silicon on silicon microcantilevers for use in atomic force microscopy. This material is known to possess low friction in humid conditions, and we find that, at the nanoscale, it is three orders of magnitude more wear-resistant than silicon under ambient conditions. A wear rate of one atom per micrometre of sliding on SiO(2) is demonstrated. We find that the classical wear law of Archard does not hold at the nanoscale; instead, atom-by-atom attrition dominates the wear mechanisms at these length scales. We estimate that the effective energy barrier for the removal of a single atom is approximately 1 eV, with an effective activation volume of approximately 1 x 10(-28) m.


ACS Nano | 2015

Controlled preferential oxidation of grain boundaries in monolayer tungsten disulfide for direct optical imaging.

Youmin Rong; Kuang He; Mercè Pacios; Alex W. Robertson; Harish Bhaskaran; Jamie H. Warner

Synthetic 2D crystal films grown by chemical vapor deposition are typically polycrystalline, and determining grain size within domains and continuous films is crucial for determining their structure. Here we show that grain boundaries in the 2D transition metal dichalcogenide WS2, grown by CVD, can be preferentially oxidized by controlled heating in air. Under our developed conditions, preferential degradation at the grain boundaries causes an increase in their physical size due to oxidation. This increase in size enables their clear and rapid identification using a standard optical microscope. We demonstrate that similar treatments in an Ar environment do no show this effect, confirming that oxidation is the main role in the structural change. Statistical analysis of grain boundary (GB) angles shows dominant mirror formation. Electrical biasing across the GB is shown to lead to changes at the GB and their observation under an optical microscope. Our approach enables high-throughput screening of as-synthesized WS2 domains and continuous films to determine their crystallinity and should enable improvements in future CVD growth of these materials.


IEEE Transactions on Nanotechnology | 2009

Nanoscale PtSi Tips for Conducting Probe Technologies

Harish Bhaskaran; Abu Sebastian; Michel Despont

A method to improve the conduction and wear properties of nanometric conducting tips by forming silicides of Pt at the tip apex is presented. Tips with PtSi apexes are fabricated in conjunction with standard Si tips. Wear measurements are carried out on both tip types of similar geometries, and a one-on-one comparison between Si and PtSi at the nanoscale is shown for the first time. Both the wear properties on tetrahedral amorphous carbon and the conduction on Au of the PtSi tip apexes are shown to be superior to the Si tips.


Advanced Materials | 2014

On‐Chip Photonic Memory Elements Employing Phase‐Change Materials

Carlos Ríos; Peiman Hosseini; C. David Wright; Harish Bhaskaran; Wolfram H. P. Pernice

Phase-change materials integrated into nanophotonic circuits provide a flexible way to realize tunable optical components. Relying on the enormous refractive-index contrast between the amorphous and crystalline states, such materials are promising candidates for on-chip photonic memories. Nonvolatile memory operation employing arrays of microring resonators is demonstrated as a route toward all-photonic chipscale information processing.


Applied Physics Letters | 2012

Photonic non-volatile memories using phase change materials

Wolfram H. P. Pernice; Harish Bhaskaran

We propose an all-photonic, non-volatile memory, and processing element based on phase-change thin-films deposited onto nanophotonic waveguides. Using photonic microring resonators partially covered with Ge2Sb2Te5 (GST) multi-level memory operation in integrated photonic circuits can be achieved. GST provides a dramatic change in refractive index upon transition from the amorphous to crystalline state, which is exploited to reversibly control both the extinction ratio and resonance wavelength of the microcavity with an additional gating port in analogy to optical transistors. Our analysis shows excellent sensitivity to the degree of crystallization inside the GST, thus providing the basis for non-von Neumann neuromorphic computing.


Nano Letters | 2015

Ultrasensitive Room-Temperature Piezoresistive Transduction in Graphene-Based Nanoelectromechanical Systems

Madhav Kumar; Harish Bhaskaran

The low mass and high quality factors that nanomechanical resonators exhibit lead to exceptional sensitivity in the frequency domain. This is especially appealing for the design of ultrasensitive force and mass sensors. The sensitivity of a nanomechanical mass and force sensor depends on its mass and quality factor; a low resonator mass and a higher quality factor reduce both the minimum resolvable mass and force. Graphene, a single atomic layer thick membrane is an ideal candidate for nanoelectromechanical resonators due to its extremely low mass and high stiffness. Here, we show that by employing the intrinsic piezoresistivity of graphene to transduce its motion in nanoelectromechanical systems, we approach a force resolution of 16.3 ± 0.8 aN/Hz(1/2) and a minimum detectable mass of 1.41 ± 0.02 zeptograms (10(-21) g) at ambient temperature. Quality factors of the driven response of the order of 10(3) at pressures ∼10(-6) Torr on several devices are also observed. Moreover, we demonstrate this at ambient temperature on chemical-vapor-deposition-grown graphene to allow for scale-up, thus demonstrating its potential for applications requiring exquisite force and mass resolution such as mass spectroscopy and magnetic resonance force microscopy.


Nanotechnology | 2009

Encapsulated tips for reliable nanoscale conduction in scanning probe technologies

Harish Bhaskaran; Abu Sebastian; Ute Drechsler; Michel Despont

Nanoscale tip apexes of conducting cantilever probes are important enablers for several conducting probe technologies that require reliable long-term operation, while preserving the nanoscale integrity of the tip apex. In this paper, the concept of an encapsulated tip with a nanoscale conducting core is presented. A method to fabricate such tips on conducting silicon microcantilevers is described. Long-term conduction and wear reliability of these nanoscale tips are evaluated systematically, and their ability to operate for sliding distances greater than 2 m in conduction and 11 m in wear on amorphous carbon is demonstrated. These results are expected to have an impact on the future of conducting probe-based technologies such as probe-based nanometrology, data storage and nanolithography.


Review of Scientific Instruments | 2009

Nanoscale phase transformation in Ge2Sb2Te5 using encapsulated scanning probes and retraction force microscopy

Harish Bhaskaran; Abu Sebastian; Andrew Pauza; Haralampos Pozidis; Michel Despont

Encapsulated conducting probes that can sustain high currents are used to study the nanoscale properties of thin-film stacks comprising of a phase-change chalcogenide, Ge(2)Sb(2)Te(5). Scaling studies on this promising candidate for random-access memory devices had thus far required extensive lithography and nanoscale growth. This seriously hampers rapid materials characterization. This article describes the use of two key techniques, an encapsulated conductive probe and its use in retraction mode, whereby the attractive force between tip and sample is used to maintain electrical contact. The effective transformation of nanoscale dots of amorphous Ge(2)Sb(2)Te(5) into the crystalline state is achieved and the electrical conductivity of the transformed structures is probed. The use of retraction force microscopy in a robust manner is demonstrated by reading the conductivity of the crystalline dots. Both these techniques could enable rapid electrical characterization of nanoscale materials, without extensive nanopatterning, thus reducing material development cycles.


IEEE Electron Device Letters | 2015

Accumulation-Based Computing Using Phase-Change Memories With FET Access Devices

Peiman Hosseini; Abu Sebastian; Nikolaos Papandreou; C. David Wright; Harish Bhaskaran

Phase-change materials and devices have received much attention as a potential route to the realization of various types of unconventional computing paradigms. In this letter, we present non-von Neumann arithmetic processing that exploits the accumulative property of phase-change memory (PCM) cells. Using PCM cells with integrated FET access devices, we perform a detailed study of accumulation-based computation. We also demonstrate efficient factorization using PCM cells, a technique that could pave the way for massively parallelized computations.

Collaboration


Dive into the Harish Bhaskaran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias Stegmaier

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge