Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harry T. Orr is active.

Publication


Featured researches published by Harry T. Orr.


Cell | 1998

Ataxin-1 Nuclear Localization and Aggregation: Role in Polyglutamine-Induced Disease in SCA1 Transgenic Mice

Ivan A. Klement; Pamela J. Skinner; Michael D. Kaytor; Hong Yi; Steven M. Hersch; H. Brent Clark; Huda Y. Zoghbi; Harry T. Orr

Transgenic mice carrying the spinocerebellar ataxia type 1 (SCA1) gene, a polyglutamine neurodegenerative disorder, develop ataxia with ataxin-1 localized to aggregates within cerebellar Purkinje cells nuclei. To examine the importance of nuclear localization and aggregation in pathogenesis, mice expressing ataxin-1[82] with a mutated NLS were established. These mice did not develop disease, demonstrating that nuclear localization is critical for pathogenesis. In a second series of transgenic mice, ataxin-1[77] containing a deletion within the self-association region was expressed within Purkinje cells nuclei. These mice developed ataxia and Purkinje cell pathology similar to the original SCA1 mice. However, no evidence of nuclear ataxin-1 aggregates was found. Thus, although nuclear localization of ataxin-1 is necessary, nuclear aggregation of ataxin-1 is not required to initiate pathogenesis in transgenic mice.


Nature Genetics | 1998

Chaperone suppression of ataxin-1 aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1

Huda Y. Zoghbi; Harry T. Orr; Donald B. Defranco; Michael A. Mancini; David L. Stenoien; Christopher J. Cummings

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by expansion of a polyglutamine tract in ataxin-1. In affected neurons of SCA1 patients and transgenic mice, mutant ataxin-1 accumulates in a single, ubiquitin-positive nuclear inclusion. In this study, we show that these inclusions stain positively for the 20S proteasome and the molecular chaperone HDJ-2/HSDJ. Similarly, HeLa cells transfected with mutant ataxin-1 develop nuclear aggregates which colocalize with the 20S proteasome and endogenous HDJ-2/HSDJ. Overexpression of wild-type HDJ-2/HSDJ in HeLa cells decreases the frequency of ataxin-1 aggregation. These data suggest that protein misfolding is responsible for the nuclear aggregates seen in SCA1, and that overexpression of a DnaJ chaperone promotes the recognition of a misfolded polyglutamine repeat protein, allowing its refolding and/or ubiquitin-dependent degradation.


Nature Medicine | 2004

RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia

Haibin Xia; Qinwen Mao; Steven Eliason; Scott Q. Harper; Inês Martins; Harry T. Orr; Henry L. Paulson; Linda Yang; Robert M. Kotin; Beverly L. Davidson

The dominant polyglutamine expansion diseases, which include spinocerebellar ataxia type 1 (SCA1) and Huntington disease, are progressive, untreatable, neurodegenerative disorders. In inducible mouse models of SCA1 and Huntington disease, repression of mutant allele expression improves disease phenotypes. Thus, therapies designed to inhibit expression of the mutant gene would be beneficial. Here we evaluate the ability of RNA interference (RNAi) to inhibit polyglutamine-induced neurodegeneration caused by mutant ataxin-1 in a mouse model of SCA1. Upon intracerebellar injection, recombinant adeno-associated virus (AAV) vectors expressing short hairpin RNAs profoundly improved motor coordination, restored cerebellar morphology and resolved characteristic ataxin-1 inclusions in Purkinje cells of SCA1 mice. Our data demonstrate in vivo the potential use of RNAi as therapy for dominant neurodegenerative disease.


Cell | 1995

SCA1 transgenic mice: A model for neurodegeneration caused by an expanded CAG trinucleotide repeat

Eric N. Burright; H. Brent Clark; Antonio Servadio; Toni Matilla; Rodney M. Feddersen; Wael S. Yunis; Lisa A. Duvick; Huda Y. Zoghbi; Harry T. Orr

Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant inherited disorder characterized by degeneration of cerebellar Purkinje cells, spinocerebellar tracts, and selective brainstem neurons owing to the expansion of an unstable CAG trinucleotide repeat. To gain insight into the pathogenesis of the SCA1 mutation and the intergenerational stability of trinucleotide repeats in mice, we have generated transgenic mice expressing the human SCA1 gene with either a normal or an expanded CAG tract. Both transgenes were stable in parent to offspring transmissions. While all six transgenic lines expressing the unexpanded human SCA1 allele had normal Purkinje cells, transgenic animals from five of six lines with the expanded SCA1 allele developed ataxia and Purkinje cell degeneration. These data indicate that expanded CAG repeats expressed in Purkinje cells are sufficient to produce degeneration and ataxia and demonstrate that a mouse model can be established for neurodegeneration caused by CAG repeat expansions.


Nature | 1997

Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures

Pamela J. Skinner; Beena T. Koshy; Christopher J. Cummings; Ivan A. Klement; Kara Helin; Antonio Servadio; Huda Y. Zoghbi; Harry T. Orr

Spinocerebellar ataxia type 1 (SCA1) is one of several neurodegenerative disorders caused by an expansion of a polyglutamine tract. It is characterized by ataxia, progressive motor deterioration, and loss of cerebellar Purkinje cells. To understand the pathogenesis of SCA1, we examined the subcellular localization of wild-type human ataxin-1 (the protein encoded by the SCA1 gene) and mutant ataxin-1 in the Purkinje cells of transgenic mice. We found that ataxin-1 localizes to the nuclei of cerebellar Purkinje cells. Normal ataxin-1 localizes to several nuclear structures ∼0.5 µm across, whereas the expanded ataxin-1 localizes to a single ∼2-µm structure, before the onset of ataxia. Mutant ataxin-1 localizes to a single nuclear structure in affected neurons of SCA1 patients. Similarly, COS-1 cells transfected with wild-type or mutant ataxin-1 show a similar pattern of nuclear localization; with expanded ataxin-1 occurring in larger structures that are fewer in number than those of normal ataxin-1. Colocalization studies show that mutant ataxin-1 causes a specific redistribution of the nuclear matrix-associated domain containing promyelocytic leukaemia protein. Nuclear matrix preparations demonstrate that ataxin-1 associates with the nuclear matrix in Purkinje and COS cells. We therefore propose that a critical aspect of SCA1 pathogenesis involves the disruption of a nuclear matrix-associated domain.


Neuron | 1999

Mutation of the E6-AP Ubiquitin Ligase Reduces Nuclear Inclusion Frequency While Accelerating Polyglutamine-Induced Pathology in SCA1 Mice

Christopher J. Cummings; Eyal Reinstein; Yaling Sun; Barbara Antalffy; Yong-hui Jiang; Aaron Ciechanover; Harry T. Orr; Arthur L. Beaudet; Huda Y. Zoghbi

Mutant ataxin-1, the expanded polyglutamine protein causing spinocerebellar ataxia type 1 (SCA1), aggregates in ubiquitin-positive nuclear inclusions (NI) that alter proteasome distribution in affected SCA1 patient neurons. Here, we observed that ataxin-1 is degraded by the ubiquitin-proteasome pathway. While ataxin-1 [2Q] and mutant ataxin-1 [92Q] are polyubiquitinated equally well in vitro, the mutant form is three times more resistant to degradation. Inhibiting proteasomal degradation promotes ataxin-1 aggregation in transfected cells. And in mice, Purkinje cells that express mutant ataxin-1 but not a ubiquitin-protein ligase have significantly fewer NIs. Nonetheless, the Purkinje cell pathology is markedly worse than that of SCA1 mice. Taken together, NIs are not necessary to induce neurodegeneration, but impaired proteasomal degradation of mutant ataxin-1 may contribute to SCA1 pathogenesis.


Cell | 2003

Interaction of Akt-Phosphorylated Ataxin-1 with 14-3-3 Mediates Neurodegeneration in Spinocerebellar Ataxia Type 1

Hung Kai Chen; Pedro Fernandez-Funez; Summer F. Acevedo; Yung C. Lam; Michael D. Kaytor; Michael H. Fernandez; Alastair Aitken; Efthimios M. C. Skoulakis; Harry T. Orr; Juan Botas; Huda Y. Zoghbi

Spinocerebellar ataxia type 1 (SCA1) is one of several neurological disorders caused by a CAG repeat expansion. In SCA1, this expansion produces an abnormally long polyglutamine tract in the protein ataxin-1. Mutant polyglutamine proteins accumulate in neurons, inducing neurodegeneration, but the mechanism underlying this accumulation has been unclear. We have discovered that the 14-3-3 protein, a multifunctional regulatory molecule, mediates the neurotoxicity of ataxin-1 by binding to and stabilizing ataxin-1, thereby slowing its normal degradation. The association of ataxin-1 with 14-3-3 is regulated by Akt phosphorylation, and in a Drosophila model of SCA1, both 14-3-3 and Akt modulate neurodegeneration. Our finding that phosphatidylinositol 3-kinase/Akt signaling and 14-3-3 cooperate to modulate the neurotoxicity of ataxin-1 provides insight into SCA1 pathogenesis and identifies potential targets for therapeutic intervention.


Nature Neuroscience | 2000

Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1.

Xi Lin; Barbara Antalffy; Dongcheul Kang; Harry T. Orr; Huda Y. Zoghbi

The expansion of an unstable CAG repeat causes spinocerebellar ataxia type 1 (SCA1) and several other neurodegenerative diseases. How polyglutamine expansions render the resulting proteins toxic to neurons, however, remains elusive. Hypothesizing that long polyglutamine tracts alter gene expression, we found certain neuronal genes involved in signal transduction and calcium homeostasis sequentially downregulated in SCA1 mice. These genes were abundant in Purkinje cells, the primary site of SCA1 pathogenesis; moreover, their downregulation was mediated by expanded ataxin-1 and occured before detectable pathology. Similar downregulation occurred in SCA1 human tissues. Altered gene expression may be the earliest mediator of polyglutamine toxicity.


Nature Genetics | 1994

Identification and characterization of the gene causing type 1 spinocerebellar ataxia

Sandro Banfi; Antonio Servadio; Ming yi Chung; Thomas J. Kwiatkowski; Alanna E. McCall; Lisa A. Duvick; Ying Shen; Elizabeth J. Roth; Harry T. Orr; Huda Y. Zoghbi

Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disorder caused by expansion of a CAG trinucleotide repeat. In this study, we describe the identification and characterization of the gene harbouring this repeat. The SCA1 transcript is 10,660 bases and is transcribed from both the wild type and SCA1 alleles. The CAG repeat, coding for a polyglutamine tract, lies within the coding region. The gene spans 450 kb of genomic DNA and is organized in nine exons. The first seven fall in the 5′ untranslated region and the last two contain the coding region, and a 7,277 basepairs 3′ untranslated region. The first four non–coding exons undergo alternative splicing in several tissues. These features suggest that the transcriptional and translational regulation of ataxin–1, the SCA1 encoded protein, may be complex.


Neuron | 2003

Serine 776 of Ataxin-1 Is Critical for Polyglutamine-Induced Disease in SCA1 Transgenic Mice

Effat S. Emamian; Michael D. Kaytor; Lisa A. Duvick; Tao Zu; Susan K. Tousey; Huda Y. Zoghbi; H. Brent Clark; Harry T. Orr

Polyglutamine-induced neurodegeneration in transgenic mice carrying the spinocerebellar ataxia type 1 (SCA1) gene is modulated by subcellular distribution of ataxin-1 and by components of the protein folding/degradation machinery. Since phosphorylation is a prominent mechanism by which these processes are regulated, we examined phosphorylation of ataxin-1 and found that serine 776 (S776) was phosphorylated. Residue 776 appeared to affect cellular deposition of ataxin-1[82Q] in that ataxin-1[82Q]-A776 failed to form nuclear inclusions in tissue culture cells. The importance of S776 for polyglutamine-induced pathogenesis was examined by generating ataxin-1[82Q]-A776 transgenic mice. These mice expressed ataxin-1[82Q]-A776 within Purkinje cell nuclei, yet the ability of ataxin-1[82Q]-A776 to induce disease was substantially reduced. These studies demonstrate that polyglutamine tract expansion and localization of ataxin-1 to the nucleus of Purkinje cells are not sufficient to induce disease. We suggest that S776 of ataxin-1 also has a critical role in SCA1 pathogenesis.

Collaboration


Dive into the Harry T. Orr's collaboration.

Top Co-Authors

Avatar

Huda Y. Zoghbi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beverly H. Koller

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald Richman

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge