Hauke Strasdat
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hauke Strasdat.
international conference on robotics and automation | 2011
Rainer Kümmerle; Giorgio Grisetti; Hauke Strasdat; Kurt Konolige; Wolfram Burgard
Many popular problems in robotics and computer vision including various types of simultaneous localization and mapping (SLAM) or bundle adjustment (BA) can be phrased as least squares optimization of an error function that can be represented by a graph. This paper describes the general structure of such problems and presents g2o, an open-source C++ framework for optimizing graph-based nonlinear error functions. Our system has been designed to be easily extensible to a wide range of problems and a new problem typically can be specified in a few lines of code. The current implementation provides solutions to several variants of SLAM and BA. We provide evaluations on a wide range of real-world and simulated datasets. The results demonstrate that while being general g2o offers a performance comparable to implementations of state-of-the-art approaches for the specific problems.
international conference on robotics and automation | 2010
Hauke Strasdat; J. M. M. Montiel; Andrew J. Davison
While the most accurate solution to off-line structure from motion (SFM) problems is undoubtedly to extract as much correspondence information as possible and perform global optimisation, sequential methods suitable for live video streams must approximate this to fit within fixed computational bounds. Two quite different approaches to real-time SFM — also called monocular SLAM (Simultaneous Localisation and Mapping) — have proven successful, but they sparsify the problem in different ways. Filtering methods marginalise out past poses and summarise the information gained over time with a probability distribution. Keyframe methods retain the optimisation approach of global bundle adjustment, but computationally must select only a small number of past frames to process. In this paper we perform the first rigorous analysis of the relative advantages of filtering and sparse optimisation for sequential monocular SLAM. A series of experiments in simulation as well using a real image SLAM system were performed by means of covariance propagation and Monte Carlo methods, and comparisons made using a combined cost/accuracy measure. With some well-discussed reservations, we conclude that while filtering may have a niche in systems with low processing resources, in most modern applications keyframe optimisation gives the most accuracy per unit of computing time.
robotics science and systems | 2010
Hauke Strasdat; J. M. M. Montiel; Andrew J. Davison
State of the art visual SLAM systems have recently been presented which are capable of accurate, large-scale and real-time performance, but most of these require stereo vision. Important application areas in robotics and beyond open up if similar performance can be demonstrated using monocular vision, since a single camera will always be cheaper, more compact and easier to calibrate than a multi-camera rig. With high quality estimation, a single camera moving through a static scene of course effectively provides its own stereo geometry via frames distributed over time. However, a classic issue with monocular visual SLAM is that due to the purely projective nature of a single camera, motion estimates and map structure can only be recovered up to scale. Without the known inter-camera distance of a stereo rig to serve as an anchor, the scale of locally constructed map portions and the corresponding motion estimates is therefore liable to drift over time. In this paper we describe a new near real-time visual SLAM system which adopts the continuous keyframe optimisation approach of the best current stereo systems, but accounts for the additional challenges presented by monocular input. In particular, we present a new pose-graph optimisation technique which allows for the efficient correction of rotation, translation and scale drift at loop closures. Especially, we describe the Lie group of similarity transformations and its relation to the corresponding Lie algebra. We also present in detail the system’s new image processing front-end which is able accurately to track hundreds of features per frame, and a filter-based approach for feature initialisation within keyframe-based SLAM. Our approach is proven via large-scale simulation and real-world experiments where a camera completes large looped trajectories.
international conference on computer vision | 2011
Hauke Strasdat; Andrew J. Davison; J. M. M. Montiel; Kurt Konolige
We present a novel and general optimisation framework for visual SLAM, which scales for both local, highly accurate reconstruction and large-scale motion with long loop closures. We take a two-level approach that combines accurate pose-point constraints in the primary region of interest with a stabilising periphery of pose-pose soft constraints. Our algorithm automatically builds a suitable connected graph of keyposes and constraints, dynamically selects inner and outer window membership and optimises both simultaneously. We demonstrate in extensive simulation experiments that our method approaches the accuracy of offline bundle adjustment while maintaining constant-time operation, even in the hard case of very loopy monocular camera motion. Furthermore, we present a set of real experiments for various types of visual sensor and motion, including large scale SLAM with both monocular and stereo cameras, loopy local browsing with either monocular or RGB-D cameras, and dense RGB-D object model building.
Image and Vision Computing | 2012
Hauke Strasdat; J. M. M. Montiel; Andrew J. Davison
While the most accurate solution to off-line structure from motion (SFM) problems is undoubtedly to extract as much correspondence information as possible and perform batch optimisation, sequential methods suitable for live video streams must approximate this to fit within fixed computational bounds. Two quite different approaches to real-time SFM - also called visual SLAM (simultaneous localisation and mapping) - have proven successful, but they sparsify the problem in different ways. Filtering methods marginalise out past poses and summarise the information gained over time with a probability distribution. Keyframe methods retain the optimisation approach of global bundle adjustment, but computationally must select only a small number of past frames to process. In this paper we perform a rigorous analysis of the relative advantages of filtering and sparse bundle adjustment for sequential visual SLAM. In a series of Monte Carlo experiments we investigate the accuracy and cost of visual SLAM. We measure accuracy in terms of entropy reduction as well as root mean square error (RMSE), and analyse the efficiency of bundle adjustment versus filtering using combined cost/accuracy measures. In our analysis, we consider both SLAM using a stereo rig and monocular SLAM as well as various different scenes and motion patterns. For all these scenarios, we conclude that keyframe bundle adjustment outperforms filtering, since it gives the most accuracy per unit of computing time.
international conference on intelligent autonomous systems | 2008
Siddhartha S. Srinivasa; David I. Ferguson; Mike Vande Weghe; Rosen Diankov; Dmitry Berenson; Casey Helfrich; Hauke Strasdat
We present an autonomous multi-robot system that can collect objects from indoor environments and load them into a dishwasher rack. We discuss each component of the system in detail and highlight the perception, navigation, and manipulation algorithms employed. We present results from several public demonstrations, including one in which the system was run for several hours and interacted with several hundred people.
international conference on robotics and automation | 2009
Hauke Strasdat; Cyrill Stachniss; Wolfram Burgard
In general, a mobile robot that operates in unknown environments has to maintain a map and has to determine its own location given the map. This introduces significant computational and memory constraints for most autonomous systems, especially for lightweight robots such as humanoids or flying vehicles. In this paper, we present a novel approach for learning a landmark selection policy that allows a robot to discard landmarks that are not valuable for its current navigation task. This enables the robot to reduce the computational burden and to carry out its task more efficiently by maintaining only the important landmarks. Our approach applies an unscented Kalman filter for addressing the simultaneous localization and mapping problems and uses Monte-Carlo reinforcement learning to obtain the selection policy. Based on real world and simulation experiments, we show that the learned policies allow for efficient robot navigation and outperform handcrafted strategies. We furthermore demonstrate that the learned policies are not only usable in a specific scenario but can also be generalized towards environments with varying properties.
ieee-ras international conference on humanoid robots | 2006
Sven Behnke; Michael Schreiber; Jörg Stückler; Reimund Renner; Hauke Strasdat
Robotic soccer superseded chess as a challenge problem and benchmark for artificial intelligence research and poses many challenges for robotics. The international RoboCup championships grew to the most important robotic competition worldwide. This paper describes the mechanical and electrical design of the robots that we constructed for RoboCup 2006, which took place in Bremen, Germany. The paper also covers the software used for perception, behavior control, communication, and simulation. Our robots performed well. The KidSize robots won the Penalty Kick competition and came in second the overall Best Humanoid ranking, next only to the titleholder, Team Osaka.
robot soccer world cup | 2006
Hauke Strasdat; Sven Behnke
An essential capability of a soccer playing robot is to robustly and accurately estimate its pose on the field. Tracking the pose of a humanoid robot is, however, a complex problem. The main difficulties are that the robot has only a constrained field of view, which is additionally often affected by occlusions, that the roll angle of the camera changes continously and can only be roughly estimated, and that dead reckoning provides only noisy estimates. In this paper, we present a technique that uses field lines, the center circle, corner poles, and goals extracted out of the images of a low-cost wide-angle camera as well as motion commands and a compass to localize a humanoid robot on the soccer field. We present a new approach to robustly extract lines using detectors for oriented line pints and the Hough transform. Since we first estimate the orientation, the individual line points are localized well in the Hough domain. In addition, while matching observed lines and model lines, we do not only consider their Hough parameters. Our similarity measure also takes into account the positions and lengths of the lines. In this way, we obtain a much more reliable estimate how well two lines fit. We apply Monte-Carlo localization to estimate the pose of the robot. The observation model used to evaluate the individual particles considers the differences of expected and measured distances and angles of the other landmarks. As we demonstrate in real-world experiments, our technique is able to robustly and accurately track the position of a humanoid robot on a soccer field. We also present experiments to evaluate the utility of using the different cues for pose estimation.
computer vision and pattern recognition | 2010
Ankur Handa; Margarita Chli; Hauke Strasdat; Andrew J. Davison
In matching tasks in computer vision, and particularly in real-time tracking from video, there are generally strong priors available on absolute and relative correspondence locations thanks to motion and scene models. While these priors are often partially used post-hoc to resolve matching consensus in algorithms like RANSAC, it was recently shown that fully integrating them in an ‘Active Matching’ (AM) approach permits efficient guided image processing with rigorous decisions guided by Information Theory. AMs weakness was that the overhead induced by intermediate Bayesian updates required meant poor scaling to cases where many correspondences were sought. In this paper we show that relaxation of the rigid probabilistic model of AM, where every feature measurement directly affects the prediction of every other, permits dramatically more scalable operation without affecting accuracy. We take a general graph-theoretic view of the structure of prior information in matching to sparsify and approximate the interconnections. We demonstrate the performance of two variations, CLAM and SubAM, in the context of sequential camera tracking. These algorithms are highly competitive with other techniques at matching hundreds of features per frame while retaining great intuitive appeal and the full probabilistic capability to digest prior information.