Hayao Ohno
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hayao Ohno.
Science | 2014
Hayao Ohno; Shinya Kato; Yasuki Naito; Hirofumi Kunitomo; Masahiro Tomioka; Yuichi Iino
How the worm changes its tastes In associative learning, you link potentially unrelated things because you are exposed to them at the same time. Ohno et al. studied a simple associative learning task in the nematode worm Caenorhabditis elegans. They presented the worms with a taste substance while withholding food. After starving in the presence of the taste substance, the animals switched their behavior from being attracted to the taste to finding it aversive. A specific isoform of the insulin receptor is critical for this type of associative learning—at least in worms. Science, this issue p. 313 Calsyntenin-dependent activation of insulin-PI3K signaling in the synaptic region governs associative learning. The phosphatidylinositol 3-kinase (PI3K) pathway regulates many cellular functions, but its roles in the nervous system are still poorly understood. We found that a newly discovered insulin receptor isoform, DAF-2c, is translocated from the cell body to the synaptic region of the chemosensory neuron in Caenorhabditis elegans by a conditioning stimulus that induces taste avoidance learning. This translocation is essential for learning and is dependent on the mitogen-activated protein kinase–regulated interaction of CASY-1 (the calsyntenin ortholog) and kinesin-1. The PI3K pathway is required downstream of the receptor. Light-regulated activation of PI3K in the synaptic region, but not in other parts of the cell, switched taste-attractive behavior to taste avoidance, mimicking the effect of conditioning. Thus, synaptic PI3K is crucial for the behavioral switch caused by learning.
Nature Communications | 2013
Hirofumi Kunitomo; Hirofumi Sato; Ryo Iwata; Yohsuke Satoh; Hayao Ohno; Koji Yamada; Yuichi Iino
It is poorly understood how sensory systems memorize the intensity of sensory stimulus, compare it with a newly sensed stimulus, and regulate the orientation behaviour based on the memory. Here we report that Caenorhabditis elegans memorizes the environmental salt concentration during cultivation and exhibits a strong behavioural preference for this concentration. The right-sided amphid gustatory neuron known as ASER, senses decreases in salt concentration, and this information is transmitted to the postsynaptic AIB interneurons only in the salt concentration range lower than the cultivation concentration. In this range, animals migrate towards higher concentration by promoting turning behaviour upon decreases in salt concentration. These observations provide a mechanism for adjusting the orientation behaviour based on the memory of sensory stimulus using a simple neural circuit.
Genetics | 2010
Takeshi Adachi; Hirofumi Kunitomo; Masahiro Tomioka; Hayao Ohno; Yoshifumi Okochi; Ikue Mori; Yuichi Iino
Animals search for foods and decide their behaviors according to previous experience. Caenorhabditis elegans detects chemicals with a limited number of sensory neurons, allowing us to dissect roles of each neuron for innate and learned behaviors. C. elegans is attracted to salt after exposure to the salt (NaCl) with food. In contrast, it learns to avoid the salt after exposure to the salt without food. In salt-attraction behavior, it is known that the ASE taste sensory neurons (ASEL and ASER) play a major role. However, little is known about mechanisms for learned salt avoidance. Here, through dissecting contributions of ASE neurons for salt chemotaxis, we show that both ASEL and ASER generate salt chemotaxis plasticity. In ASER, we have previously shown that the insulin/PI 3-kinase signaling acts for starvation-induced salt chemotaxis plasticity. This study shows that the PI 3-kinase signaling promotes aversive drive of ASER but not of ASEL. Furthermore, the Gq signaling pathway composed of Gqα EGL-30, diacylglycerol, and nPKC (novel protein kinase C) TTX-4 promotes attractive drive of ASER but not of ASEL. A putative salt receptor GCY-22 guanylyl cyclase is required in ASER for both salt attraction and avoidance. Our results suggest that ASEL and ASER use distinct molecular mechanisms to regulate salt chemotaxis plasticity.
Journal of Cell Science | 2014
Yoko Otsubo; Akira Yamashita; Hayao Ohno; Masayuki Yamamoto
ABSTRACT Target of rapamycin (TOR) kinase regulates cell metabolism and growth, acting as a subunit of two multi-protein complexes, TORC1 and TORC2. Known TORC substrates are either kinases or general factors involved in growth control. Here, we show that fission yeast TORC1, which promotes vegetative growth and suppresses sexual development, can phosphorylate Mei2 (a specific factor involved in switching the cell fate) in vitro. Alanine substitutions at the nine Mei2 phosphorylation sites stabilize the protein and promote mating and meiosis in vivo. We found that Mei2 is polyubiquitylated in vivo in a TORC1-dependent manner. Based on these data, we propose that TORC1 contributes to the suppression of sexual development by phosphorylating Mei2, in addition to controlling the cellular metabolic status.
Scientific Reports | 2016
M. Endo; Mitsuru Hattori; H. Toriyabe; Hayao Ohno; H. Kamiguchi; Yuichi Iino; Takeaki Ozawa
Growth cones of extending axons navigate to correct targets by sensing a guidance cue gradient via membrane protein receptors. Although most signaling mechanisms have been clarified using an in vitro approach, it is still difficult to investigate the growth cone behavior in complicated extracellular environment of living animals due to the lack of tools. We develop a system for the light-dependent activation of a guidance receptor, Deleted in Colorectal Cancer (DCC), using Arabidopsis thaliana Cryptochrome 2, which oligomerizes upon blue-light absorption. Blue-light illumination transiently activates DCC via its oligomerization, which initiates downstream signaling in the illuminated subcellular region. The extending axons are attracted by illumination in cultured chick dorsal root ganglion neurons. Moreover, light-mediated navigation of the growth cones is achieved in living Caenorhabditis elegans. The photo-manipulation system is applicable to investigate the relationship between the growth cone behavior and its surrounding environment in living tissue.
PLOS ONE | 2017
Naoko Sakai; Hayao Ohno; Masahiro Tomioka; Yuichi Iino; Kaveh Ashrafi
Several types of associative learning are dependent upon the presence or absence of food, and are crucial for the survival of most animals. Target of rapamycin (TOR), a kinase which exists as a component of two complexes, TOR complex 1 (TORC1) and TOR complex 2 (TORC2), is known to act as a nutrient sensor in numerous organisms. However, the in vivo roles of TOR signaling in the nervous system remain largely unclear, partly because its multifunctionality and requirement for survival make it difficult to investigate. Here, using pharmacological inhibitors and genetic analyses, we show that TORC1 and TORC2 contribute to associative learning between salt and food availability in the nematode Caenorhabditis elegans in a process called taste associative learning. Worms migrate to salt concentrations experienced previously during feeding, but they avoid salt concentrations experienced under starvation conditions. Administration of the TOR inhibitor rapamycin causes a behavioral defect after starvation conditioning. Worms lacking either RICT-1 or SINH-1, two TORC2 components, show defects in migration to high salt levels after learning under both fed and starved conditions. We also analyzed the behavioral phenotypes of mutants of the putative TORC1 substrate RSKS-1 (the C. elegans homolog of the mammalian S6 kinase S6K) and the putative TORC2 substrates SGK-1 and PKC-2 (homologs of the serum and glucocorticoid-induced kinase 1, SGK1, and protein kinase C-α, PKC-α, respectively) and found that neuronal RSKS-1 and PKC-2, as well as intestinal SGK-1, are involved in taste associative learning. Our findings shed light on the functions of TOR signaling in behavioral plasticity and provide insight into the mechanisms by which information sensed in the intestine affects the nervous system to modulate food-searching behaviors.
eLife | 2017
Hayao Ohno; Morikatsu Yoshida; Takahiro Sato; Johji Kato; Mikiya Miyazato; Takanori Ida; Yuichi Iino
Peptide signaling controls many processes involving coordinated actions of multiple organs, such as hormone-mediated appetite regulation. However, the extent to which the mode of action of peptide signaling is conserved in different animals is largely unknown, because many peptides and receptors remain orphan and many undiscovered peptides still exist. Here, we identify two novel Caenorhabditis elegans neuropeptides, LURY-1-1 and LURY-1-2, as endogenous ligands for the neuropeptide receptor-22 (NPR-22). Both peptides derive from the same precursor that is orthologous to invertebrate luqin/arginine-tyrosine-NH2 (RYamide) proneuropeptides. LURY-1 peptides are secreted from two classes of pharyngeal neurons and control food-related processes: feeding, lifespan, egg-laying, and locomotory behavior. We propose that LURY-1 peptides transmit food signals to NPR-22 expressed in feeding pacemaker neurons and a serotonergic neuron. Our results identified a critical role for luqin-like RYamides in feeding-related processes and suggested that peptide-mediated negative feedback is important for satiety regulation in C. elegans.
Cell Reports | 2017
Hayao Ohno; Naoko Sakai; Takeshi Adachi; Yuichi Iino
The Molecular Biology Society of Japan | 2016
Keita Mori; Michinori Koebis; Hayao Ohno; Yuichi Iino; Atsu Aiba
The Molecular Biology Society of Japan | 2015
Tomohiko Ohashi; Naoko Sakai; Hayao Ohno; Ryo Iwata; Yuichi Iino