Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirofumi Kunitomo is active.

Publication


Featured researches published by Hirofumi Kunitomo.


Neuron | 2006

The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans.

Masahiro Tomioka; Takeshi Adachi; Hiroshi Suzuki; Hirofumi Kunitomo; William R. Schafer; Yuichi Iino

The insulin-like signaling pathway is known to regulate fat metabolism, dauer formation, and longevity in Caenorhabditis elegans. Here, we report that this pathway is also involved in salt chemotaxis learning, in which animals previously exposed to a chemoattractive salt under starvation conditions start to show salt avoidance behavior. Mutants of ins-1, daf-2, age-1, pdk-1, and akt-1, which encode the homologs of insulin, insulin/IGF-I receptor, PI 3-kinase, phosphoinositide-dependent kinase, and Akt/PKB, respectively, show severe defects in salt chemotaxis learning. daf-2 and age-1 act in the ASER salt-sensing neuron, and the activity level of the DAF-2/AGE-1 pathway in this neuron determines the extent and orientation of salt chemotaxis. On the other hand, ins-1 acts in AIA interneurons, which receive direct synaptic inputs from sensory neurons and also send synaptic outputs to ASER. These results suggest that INS-1 secreted from AIA interneurons provides feedback to ASER to generate plasticity of chemotaxis.


Genome Biology | 2005

Identification of ciliated sensory neuron-expressed genes in Caenorhabditis elegans using targeted pull-down of poly(A) tails

Hirofumi Kunitomo; Hiroko Uesugi; Yuji Kohara; Yuichi Iino

It is not always easy to apply microarray technology to small numbers of cells because of the difficulty in selectively isolating mRNA from such cells. We report here the preparation of mRNA from ciliated sensory neurons of Caenorhabditis elegans using the mRNA-tagging method, in which poly(A) RNA was co-immunoprecipitated with an epitope-tagged poly(A)-binding protein specifically expressed in sensory neurons. Subsequent cDNA microarray analyses led to the identification of a panel of sensory neuron-expressed genes.


Nature | 2015

Structural basis for Na + transport mechanism by a light-driven Na + pump

Hideaki E. Kato; Keiichi Inoue; Rei Abe-Yoshizumi; Yoshitaka Kato; Hikaru Ono; Masae Konno; Shoko Hososhima; Toru Ishizuka; Mohammad Razuanul Hoque; Hirofumi Kunitomo; Jumpei Ito; Susumu Yoshizawa; Keitaro Yamashita; Mizuki Takemoto; Tomohiro Nishizawa; Reiya Taniguchi; Kazuhiro Kogure; Andrés D. Maturana; Yuichi Iino; Hiromu Yawo; Ryuichiro Ishitani; Hideki Kandori; Osamu Nureki

Krokinobacter eikastus rhodopsin 2 (KR2) is the first light-driven Na+ pump discovered, and is viewed as a potential next-generation optogenetics tool. Since the positively charged Schiff base proton, located within the ion-conducting pathway of all light-driven ion pumps, was thought to prohibit the transport of a non-proton cation, the discovery of KR2 raised the question of how it achieves Na+ transport. Here we present crystal structures of KR2 under neutral and acidic conditions, which represent the resting and M-like intermediate states, respectively. Structural and spectroscopic analyses revealed the gating mechanism, whereby the flipping of Asp116 sequesters the Schiff base proton from the conducting pathway to facilitate Na+ transport. Together with the structure-based engineering of the first light-driven K+ pumps, electrophysiological assays in mammalian neurons and behavioural assays in a nematode, our studies reveal the molecular basis for light-driven non-proton cation pumps and thus provide a framework that may advance the development of next-generation optogenetics.


Journal of Biological Chemistry | 2010

Identification of tubulin deglutamylase among Caenorhabditis elegans and mammalian cytosolic carboxypeptidases (CCPs)

Yoshishige Kimura; Nobuya Kurabe; Koji Ikegami; Koji Tsutsumi; Yoshiyuki Konishi; Oktay I. Kaplan; Hirofumi Kunitomo; Yuichi Iino; Oliver E. Blacque; Mitsutoshi Setou

Tubulin polyglutamylation is a reversible post-translational modification, serving important roles in microtubule (MT)-related processes. Polyglutamylases of the tubulin tyrosine ligase-like (TTLL) family add glutamate moieties to specific tubulin glutamate residues, whereas as yet unknown deglutamylases shorten polyglutamate chains. First we investigated regulatory machinery of tubulin glutamylation in MT-based sensory cilia of the roundworm Caenorhabditis elegans. We found that ciliary MTs were polyglutamylated by a process requiring ttll-4. Conversely, loss of ccpp-6 gene function, which encodes one of two cytosolic carboxypeptidases (CCPs), resulted in elevated levels of ciliary MT polyglutamylation. Consistent with a deglutamylase function for ccpp-6, overexpression of this gene in ciliated cells decreased polyglutamylation signals. Similarly, we confirmed that overexpression of murine CCP5, one of two sequence orthologs of nematode ccpp-6, caused a dramatic loss of MT polyglutamylation in cultured mammalian cells. Finally, using an in vitro assay for tubulin glutamylation, we found that recombinantly expressed Myc-tagged CCP5 exhibited deglutamylase biochemical activities. Together, these data from two evolutionarily divergent systems identify C. elegans CCPP-6 and its mammalian ortholog CCP5 as a tubulin deglutamylase.


Proceedings of the National Academy of Sciences of the United States of America | 2008

CASY-1, an ortholog of calsyntenins/alcadeins, is essential for learning in Caenorhabditis elegans

D. Ikeda; Yukan Duan; Masahiro Matsuki; Hirofumi Kunitomo; Harald Hutter; Edward M. Hedgecock; Yuichi Iino

Calsyntenins/alcadeins are type I transmembrane proteins with two extracellular cadherin domains highly expressed in mammalian brain. They form a tripartite complex with X11/X11L and APP (amyloid precursor protein) and are proteolytically processed in a similar fashion to APP. Although a genetic association of calsyntenin-2 with human memory performance has recently been reported, physiological roles and molecular functions of the protein in the nervous system are poorly understood. Here, we show that CASY-1, the Caenorhabditis elegans ortholog of calsyntenins/alcadeins, is essential for multiple types of learning. Through a genetic screen, we found that casy-1 mutants show defects in salt chemotaxis learning. casy-1 mutants also show defects in temperature learning, olfactory adaptation, and integration of two sensory signals. casy-1 is widely expressed in the nervous system. Expression of casy-1 in a single sensory neuron and at the postdevelopmental stage is sufficient for its function in salt chemotaxis learning. The fluorescent protein-tagged ectodomain of CASY-1 is released from neurons. Moreover, functional domain analyses revealed that both cytoplasmic and transmembrane domains of this protein are dispensable, whereas the ectodomain, which contains the LG/LNS-like domain, is critically required for learning. These results suggest that learning is modulated by the released ectodomain of CASY-1.


Science | 2010

Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans

Koji Yamada; Takaaki Hirotsu; Masahiro Matsuki; Rebecca A. Butcher; Masahiro Tomioka; Takeshi Ishihara; Jon Clardy; Hirofumi Kunitomo; Yuichi Iino

Too Close for Comfort Pheromones are often used for sexual communications in animals, but they can also serve as a measure of population density. Now, Yamada et al. (p. 1647) have found that population density in the nematode worm Caenorhabditis elegans regulates plasticity of olfactory behavior, in which attraction to an odorant decreases after prolonged exposure. Using two rounds of genetic screens, a peptide named SNET-1 and a homolog of a mammalian transmembrane peptidase neprilysin were found to mediate pheromonal regulation. This regulation of olfactory behavior may serve to coordinate the behavior of individual animals in relation to the status of the whole population. A nematode odor response is regulated by population density through dauer pheromone, a neuropeptide, and neprilysin peptidase. Population density–dependent dispersal is a well-characterized strategy of animal behavior in which dispersal rate increases when population density is higher. Caenorhabditis elegans shows positive chemotaxis to a set of odorants, but the chemotaxis switches from attraction to dispersal after prolonged exposure to the odorants. We show here that this plasticity of olfactory behavior is dependent on population density and that this regulation is mediated by pheromonal signaling. We show that a peptide, suppressor of NEP-2 (SNET-1), negatively regulates olfactory plasticity and that its expression is down-regulated by the pheromone. NEP-2, a homolog of the extracellular peptidase neprilysin, antagonizes SNET-1, and this function is essential for olfactory plasticity. These results suggest that population density information is transmitted through the external pheromone and endogenous peptide signaling to modulate chemotactic behavior.


Nature Neuroscience | 2009

A trophic role for Wnt-Ror kinase signaling during developmental pruning in Caenorhabditis elegans

Yu Hayashi; Takaaki Hirotsu; Ryo Iwata; Eriko Kage-Nakadai; Hirofumi Kunitomo; Takeshi Ishihara; Yuichi Iino; Takeo Kubo

The molecular mechanism by which neurites are selected for elimination or incorporation into the mature circuit during developmental pruning remains unknown. The trophic theory postulates that local cues provided by target or surrounding cells act to inhibit neurite elimination. However, no widely conserved factor mediating this trophic function has been identified. We found that the developmental survival of specific neurites in Caenorhabditis elegans largely depends on detection of the morphogen Wnt by the Ror kinase CAM-1, which is a transmembrane tyrosine kinase with a Frizzled domain. Mutations in Wnt genes or in cam-1 enhanced neurite elimination, whereas overexpression of cam-1 inhibited neurite elimination in a Wnt-dependent manner. Moreover, mutations in these genes counteracted the effect of a mutation in mbr-1, which encodes a transcription factor that promotes neurite elimination. These results reveal the trophic role of an atypical Wnt pathway and reinforce the classical model of developmental pruning.


Science | 2014

Role of synaptic phosphatidylinositol 3-kinase in a behavioral learning response in C. elegans

Hayao Ohno; Shinya Kato; Yasuki Naito; Hirofumi Kunitomo; Masahiro Tomioka; Yuichi Iino

How the worm changes its tastes In associative learning, you link potentially unrelated things because you are exposed to them at the same time. Ohno et al. studied a simple associative learning task in the nematode worm Caenorhabditis elegans. They presented the worms with a taste substance while withholding food. After starving in the presence of the taste substance, the animals switched their behavior from being attracted to the taste to finding it aversive. A specific isoform of the insulin receptor is critical for this type of associative learning—at least in worms. Science, this issue p. 313 Calsyntenin-dependent activation of insulin-PI3K signaling in the synaptic region governs associative learning. The phosphatidylinositol 3-kinase (PI3K) pathway regulates many cellular functions, but its roles in the nervous system are still poorly understood. We found that a newly discovered insulin receptor isoform, DAF-2c, is translocated from the cell body to the synaptic region of the chemosensory neuron in Caenorhabditis elegans by a conditioning stimulus that induces taste avoidance learning. This translocation is essential for learning and is dependent on the mitogen-activated protein kinase–regulated interaction of CASY-1 (the calsyntenin ortholog) and kinesin-1. The PI3K pathway is required downstream of the receptor. Light-regulated activation of PI3K in the synaptic region, but not in other parts of the cell, switched taste-attractive behavior to taste avoidance, mimicking the effect of conditioning. Thus, synaptic PI3K is crucial for the behavioral switch caused by learning.


Current Biology | 2005

MBR-1, a Novel Helix-Turn-Helix Transcription Factor, Is Required for Pruning Excessive Neurites in Caenorhabditis elegans

Eriko Kage; Yu Hayashi; Hideaki Takeuchi; Takaaki Hirotsu; Hirofumi Kunitomo; Takao Inoue; Hiroyuki Arai; Yuichi Iino; Takeo Kubo

In the developing brain, excessive neurites are actively pruned in the construction and remodeling of neural circuits. We demonstrate for the first time that the pruning of neurites occurs in the simple neural circuit of Caenorhabditis elegans and that a novel transcription factor, MBR-1, is involved in this process. We identified MBR-1 as a C. elegans ortholog of Mblk-1, a transcription factor that is expressed preferentially in the mushroom bodies of the honeybee brain. Although Mblk-1 homologs are conserved among animal species, their roles in the nervous system have never been analyzed. We used C. elegans as an ideal model animal for analysis of neuronal development. mbr-1 is expressed in various neurons in the head and tail ganglia. A comparison of the morphology of mbr-1-expressing neurons revealed that excessive neurites connecting the left and right AIM interneurons are eliminated during larval stages in wild-type but are sustained through the adult stage in the mbr-1 mutant. In addition, mbr-1 expression is regulated by UNC-86, a POU domain transcription factor, and the pruning of the excessive AIM connection is impaired in the unc-86 mutant. These findings provide an important clue for further genetic dissection of neurite pruning.


Current Genetics | 1995

Schizosaccharomyces pombe pac2 § controls the onset of sexual development via a pathway independent of the cAMP cascade

Hirofumi Kunitomo; Asako Sugimoto; Masayuki Yamamoto; Caroline R. M. Wilkinson

The Schizosaccharomyces pombe pac2 gene encodes a protein of 235 amino acids not similar to any protein of known function. Cells over-expressing pac2 were poor in mating and sporulation. Expression of ste11, which encodes a key transcription factor for sexual development, was not inducible by nitrogen starvation in these cells. Cells defective in pac2 could express ste11 and enter sexual development under incomplete starvation conditions. Although expression of ste11 is regulated primarily by the cAMP cascade, genetic analysis indicated that this cascade and pac2 can partially compensate for each other in the regulation of sexual development, and that neither of them is epistatic over the other. Thus, Pac2 appears to control ste11 expression via a signaling pathway independent of the cAMP cascade.

Collaboration


Dive into the Hirofumi Kunitomo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge