Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hayretin Yumerefendi is active.

Publication


Featured researches published by Hayretin Yumerefendi.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins

Gurkan Guntas; Ryan A. Hallett; Seth P. Zimmerman; Tishan Williams; Hayretin Yumerefendi; James E. Bear; Brian Kuhlman

Significance Photoactivatable proteins are powerful tools for studying biological processes. Light-induced dimers are especially useful because they can be turned on and off with high spatial and temporal resolution in living systems, allowing for control of protein localization and activity. Here, we develop and apply methods for identifying mutations that improve the effectiveness of a light-induced dimer. The engineered switch is modular, can be used in most organisms, has more than 50-fold change in binding affinity upon light stimulation, and can be used to initiate signaling pathways in a specific region of a cell. The discovery of light-inducible protein–protein interactions has allowed for the spatial and temporal control of a variety of biological processes. To be effective, a photodimerizer should have several characteristics: it should show a large change in binding affinity upon light stimulation, it should not cross-react with other molecules in the cell, and it should be easily used in a variety of organisms to recruit proteins of interest to each other. To create a switch that meets these criteria we have embedded the bacterial SsrA peptide in the C-terminal helix of a naturally occurring photoswitch, the light-oxygen-voltage 2 (LOV2) domain from Avena sativa. In the dark the SsrA peptide is sterically blocked from binding its natural binding partner, SspB. When activated with blue light, the C-terminal helix of the LOV2 domain undocks from the protein, allowing the SsrA peptide to bind SspB. Without optimization, the switch exhibited a twofold change in binding affinity for SspB with light stimulation. Here, we describe the use of computational protein design, phage display, and high-throughput binding assays to create an improved light inducible dimer (iLID) that changes its affinity for SspB by over 50-fold with light stimulation. A crystal structure of iLID shows a critical interaction between the surface of the LOV2 domain and a phenylalanine engineered to more tightly pin the SsrA peptide against the LOV2 domain in the dark. We demonstrate the functional utility of the switch through light-mediated subcellular localization in mammalian cell culture and reversible control of small GTPase signaling.


PLOS ONE | 2015

Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation.

Hayretin Yumerefendi; Daniel J. Dickinson; Hui Wang; Seth P. Zimmerman; James E. Bear; Bob Goldstein; Klaus M. Hahn; Brian Kuhlman

Light-activatable proteins allow precise spatial and temporal control of biological processes in living cells and animals. Several approaches have been developed for controlling protein localization with light, including the conditional inhibition of a nuclear localization signal (NLS) with the Light Oxygen Voltage (AsLOV2) domain of phototropin 1 from Avena sativa. In the dark, the switch adopts a closed conformation that sterically blocks the NLS motif. Upon activation with blue light the C-terminus of the protein unfolds, freeing the NLS to direct the protein to the nucleus. A previous study showed that this approach can be used to control the localization and activity of proteins in mammalian tissue culture cells. Here, we extend this result by characterizing the binding properties of a LOV/NLS switch and demonstrating that it can be used to control gene transcription in yeast. Additionally, we show that the switch, referred to as LANS (light-activated nuclear shuttle), functions in the C. elegans embryo and allows for control of nuclear localization in individual cells. By inserting LANS into the C. elegans lin-1 locus using Cas9-triggered homologous recombination, we demonstrated control of cell fate via light-dependent manipulation of a native transcription factor. We conclude that LANS can be a valuable experimental method for spatial and temporal control of nuclear localization in vivo.


ACS Synthetic Biology | 2016

Correlating in Vitro and in Vivo Activities of Light-Inducible Dimers: A Cellular Optogenetics Guide

Ryan A. Hallett; Seth P. Zimmerman; Hayretin Yumerefendi; James E. Bear; Brian Kuhlman

Light-inducible dimers are powerful tools for cellular optogenetics, as they can be used to control the localization and activity of proteins with high spatial and temporal resolution. Despite the generality of the approach, application of light-inducible dimers is not always straightforward, as it is frequently necessary to test alternative dimer systems and fusion strategies before the desired biological activity is achieved. This process is further hindered by an incomplete understanding of the biophysical/biochemical mechanisms by which available dimers behave and how this correlates to in vivo function. To better inform the engineering process, we examined the biophysical and biochemical properties of three blue-light-inducible dimer variants (cryptochrome2 (CRY2)/CIB1, iLID/SspB, and LOVpep/ePDZb) and correlated these characteristics to in vivo colocalization and functional assays. We find that the switches vary dramatically in their dark and lit state binding affinities and that these affinities correlate with activity changes in a variety of in vivo assays, including transcription control, intracellular localization studies, and control of GTPase signaling. Additionally, for CRY2, we observe that light-induced changes in homo-oligomerization can have significant effects on activity that are sensitive to alternative fusion strategies.


Nature Chemical Biology | 2016

Light-induced nuclear export reveals rapid dynamics of epigenetic modifications

Hayretin Yumerefendi; Andrew Michael Lerner; Seth P. Zimmerman; Klaus M. Hahn; James E. Bear; Brian Kuhlman

We engineered a photoactivatable system for rapidly and reversibly exporting proteins from the nucleus by embedding a nuclear export signal in the LOV2 domain from phototropin 1. Fusing the chromatin modifier Bre1 to the photoswitch, we achieved light-dependent control of histone H2B monoubiquitylation in yeast, revealing fast turnover of the ubiquitin mark. Moreover, this inducible system allowed us to dynamically monitor the status of epigenetic modifications dependent on H2B ubiquitylation.


Nucleic Acids Research | 2015

SwiftLib: rapid degenerate-codon-library optimization through dynamic programming

Timothy M. Jacobs; Hayretin Yumerefendi; Brian Kuhlman; Andrew Leaver-Fay

Degenerate codon (DC) libraries efficiently address the experimental library-size limitations of directed evolution by focusing diversity toward the positions and toward the amino acids (AAs) that are most likely to generate hits; however, manually constructing DC libraries is challenging, error prone and time consuming. This paper provides a dynamic programming solution to the task of finding the best DCs while keeping the size of the library beneath some given limit, improving on the existing integer-linear programming formulation. It then extends the algorithm to consider multiple DCs at each position, a heretofore unsolved problem, while adhering to a constraint on the number of primers needed to synthesize the library. In the two library-design problems examined here, the use of multiple DCs produces libraries that very nearly cover the set of desired AAs while still staying within the experimental size limits. Surprisingly, the algorithm is able to find near-perfect libraries where the ratio of amino-acid sequences to nucleic-acid sequences approaches 1; it effectively side-steps the degeneracy of the genetic code. Our algorithm is freely available through our web server and solves most design problems in about a second.


Journal of the American Chemical Society | 2017

Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides

Tyler L. Grove; Paul Michael Himes; Sungwon Hwang; Hayretin Yumerefendi; Jeffrey B. Bonanno; Brian Kuhlman; Steven C. Almo; Albert A. Bowers

Sactipeptides are ribosomally synthesized peptides that contain a characteristic thioether bridge (sactionine bond) that is installed posttranslationally and is absolutely required for their antibiotic activity. Sactipeptide biosynthesis requires a unique family of radical SAM enzymes, which contain multiple [4Fe-4S] clusters, to form the requisite thioether bridge between a cysteine and the α-carbon of an opposing amino acid through radical-based chemistry. Here we present the structure of the sactionine bond-forming enzyme CteB, from Clostridium thermocellum ATCC 27405, with both SAM and an N-terminal fragment of its peptidyl-substrate at 2.04 Å resolution. CteB has the (β/α)6-TIM barrel fold that is characteristic of radical SAM enzymes, as well as a C-terminal SPASM domain that contains two auxiliary [4Fe-4S] clusters. Importantly, one [4Fe-4S] cluster in the SPASM domain exhibits an open coordination site in absence of peptide substrate, which is coordinated by a peptidyl-cysteine residue in the bound state. The crystal structure of CteB also reveals an accessory N-terminal domain that has high structural similarity to a recently discovered motif present in several enzymes that act on ribosomally synthesized and post-translationally modified peptides (RiPPs), known as a RiPP precursor peptide recognition element (RRE). This crystal structure is the first of a sactionine bond forming enzyme and sheds light on structures and mechanisms of other members of this class such as AlbA or ThnB.


Methods in Enzymology | 2016

Engineering and Application of LOV2-Based Photoswitches

Seth P. Zimmerman; Brian Kuhlman; Hayretin Yumerefendi

Cellular optogenetic switches, a novel class of biological tools, have improved our understanding of biological phenomena that were previously intractable. While the design and engineering of these proteins has historically varied, they are all based on borrowed elements from plant and bacterial photoreceptors. In general terms, each of the optogenetic switches designed to date exploits the endogenous light-induced change in photoreceptor conformation while repurposing its effect to target a different biological phenomenon. We focus on the well-characterized light-oxygen-voltage 2 (LOV2) domain from Avena sativa phototropin 1 as our cornerstone for design. While the function of the LOV2 domain in the context of the phototropin protein is not fully elucidated, its thorough biophysical characterization as an isolated domain has created a strong foundation for engineering of photoswitches. In this chapter, we examine the biophysical characteristics of the LOV2 domain that may be exploited to produce an optogenetic switch and summarize previous design efforts to provide guidelines for an effective design. Furthermore, we provide protocols for assays including fluorescence polarization, phage display, and microscopy that are optimized for validating, improving, and using newly designed photoswitches.


ChemBioChem | 2018

Light‐Dependent Cytoplasmic Recruitment Enhances the Dynamic Range of a Nuclear Import Photoswitch

Hayretin Yumerefendi; Hui Wang; Daniel J. Dickinson; Andrew Michael Lerner; Per Malkus; Bob Goldstein; Klaus M. Hahn; Brian Kuhlman

Cellular signal transduction is often regulated at multiple steps to achieve more complex logic or precise control of a pathway. For instance, some signaling mechanisms couple allosteric activation with localization to achieve high signal to noise. Here, we create a system for light‐activated nuclear import that incorporates two levels of control. It consists of a nuclear import photoswitch, light‐activated nuclear shuttle (LANS), and a protein engineered to preferentially interact with LANS in the dark, Zdk2. First, Zdk2 is tethered to a location in the cytoplasm that sequesters LANS in the dark. Second, LANS incorporates a nuclear localization signal (NLS) that is sterically blocked from binding to the nuclear import machinery in the dark. If activated with light, LANS both dissociates from its tethered location and exposes its NLS, which leads to nuclear accumulation. We demonstrate that this coupled system improves the dynamic range of LANS in mammalian cells, yeast, and Caenorhabditis elegans and provides tighter control of transcription factors that have been fused to LANS.


Biochemistry | 2018

We FRET so You Don’t Have To: New Models of the Lipoprotein Lipase Dimer

Cassandra K. Hayne; Hayretin Yumerefendi; Lin Cao; Jacob Gauer; Michael J. Lafferty; Brian Kuhlman; Dorothy A. Erie; Saskia B. Neher

Lipoprotein lipase (LPL) is a dimeric enzyme that is responsible for clearing triglyceride-rich lipoproteins from the blood. Although LPL plays a key role in cardiovascular health, an experimentally derived three-dimensional structure has not been determined. Such a structure would aid in understanding mutations in LPL that cause familial LPL deficiency in patients and help in the development of therapeutic strategies to target LPL. A major obstacle to structural studies of LPL is that LPL is an unstable protein that is difficult to produce in the quantities needed for nuclear magnetic resonance or crystallography. We present updated LPL structural models generated by combining disulfide mapping, computational modeling, and data derived from single-molecule Förster resonance energy transfer (smFRET). We pioneer the technique of smFRET for use with LPL by developing conditions for imaging active LPL and identifying positions in LPL for the attachment of fluorophores. Using this approach, we measure LPL-LPL intermolecular interactions to generate experimental constraints that inform new computational models of the LPL dimer structure. These models suggest that LPL may dimerize using an interface that is different from the dimerization interface suggested by crystal packing contacts seen in structures of pancreatic lipase.


Nature Methods | 2016

LOVTRAP: an optogenetic system for photoinduced protein dissociation

Hui Wang; Marco Vilela; Andreas Winkler; Miroslaw Tarnawski; Ilme Schlichting; Hayretin Yumerefendi; Brian Kuhlman; Rihe Liu; Gaudenz Danuser; Klaus M. Hahn

Collaboration


Dive into the Hayretin Yumerefendi's collaboration.

Top Co-Authors

Avatar

Brian Kuhlman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Seth P. Zimmerman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

James E. Bear

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Klaus M. Hahn

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Hui Wang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Andrew Michael Lerner

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Bob Goldstein

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Dickinson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Ryan A. Hallett

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Albert A. Bowers

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge