Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hazel C. Poyntz is active.

Publication


Featured researches published by Hazel C. Poyntz.


Clinical Infectious Diseases | 2011

Potent CD8+ T-Cell Immunogenicity in Humans of a Novel Heterosubtypic Influenza A Vaccine, MVA−NP+M1

Tamara Berthoud; Matthew Hamill; Patrick J. Lillie; Lenias Hwenda; Katharine A. Collins; Katie Ewer; Anita Milicic; Hazel C. Poyntz; Teresa Lambe; Helen A. Fletcher; Adrian V. S. Hill; Sarah C. Gilbert

Background. Influenza A viruses cause occasional pandemics and frequent epidemics. Licensed influenza vaccines that induce high antibody titers to the highly polymorphic viral surface antigen hemagglutinin must be re-formulated and readministered annually. A vaccine providing protective immunity to the highly conserved internal antigens could provide longer-lasting protection against multiple influenza subtypes. Methods. We prepared a Modified Vaccinia virus Ankara (MVA) vector encoding nucleoprotein and matrix protein 1 (MVA−NP+M1) and conducted a phase I clinical trial in healthy adults. Results. The vaccine was generally safe and well tolerated, with significantly fewer local side effects after intramuscular rather than intradermal administration. Systemic side effects increased at the higher dose in both frequency and severity, with 5 out of 8 volunteers experiencing severe nausea/vomiting, malaise, or rigors. Ex vivo T-cell responses to NP and M1 measured by IFN-γ ELISPOT assay were significantly increased after vaccination (prevaccination median of 123 spot-forming units/million peripheral blood mononuclear cells, postvaccination peak response median 339, 443, and 1443 in low-dose intradermal, low-dose intramuscular, and high-dose intramuscular groups, respectively), and the majority of the antigen-specific T cells were CD8+. Conclusions. We conclude that the vaccine was both safe and remarkably immunogenic, leading to frequencies of responding T cells that appear to be much higher than those induced by any other influenza vaccination approach. Further studies will be required to find the optimum dose and to assess whether the increased T-cell response to conserved influenza proteins results in protection from influenza disease.


BMJ Open | 2011

A Phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults

Angela M. Minassian; Rosalind Rowland; Natalie E. R. Beveridge; Ian D. Poulton; Iman Satti; Stephanie A. Harris; Hazel C. Poyntz; Matthew Hamill; Kristin L. Griffiths; Clare R. Sander; David R. Ambrozak; David A. Price; Brenna J. Hill; Joseph P. Casazza; Richard A. Koup; Mario Roederer; Alan Winston; Jonathan Ross; Jackie Sherrard; Guy Rooney; Nicola Williams; Alison M. Lawrie; Helen A. Fletcher; Ansar A. Pathan; Helen McShane

Objectives Control of the tuberculosis (TB) epidemic is a global health priority and one that is likely to be achieved only through vaccination. The critical overlap with the HIV epidemic requires any effective TB vaccine regimen to be safe in individuals who are infected with HIV. The objectives of this clinical trial were to evaluate the safety and immunogenicity of a leading candidate TB vaccine, MVA85A, in healthy, HIV-infected adults. Design This was an open-label Phase I trial, performed in 20 healthy HIV-infected, antiretroviral-naïve subjects. Two different doses of MVA85A were each evaluated as a single immunisation in 10 subjects, with 24 weeks of follow-up. The safety of MVA85A was assessed by clinical and laboratory markers, including regular CD4 counts and HIV RNA load measurements. Vaccine immunogenicity was assessed by ex vivo interferon γ (IFN-γ) ELISpot assays and flow-cytometric analysis. Results MVA85A was safe in subjects with HIV infection, with an adverse-event profile comparable with historical data from previous trials in HIV-uninfected subjects. There were no clinically significant vaccine-related changes in CD4 count or HIV RNA load in any subjects, and no evidence from qPCR analyses to indicate that MVA85A vaccination leads to widespread preferential infection of vaccine-induced CD4 T cell populations. Both doses of MVA85A induced an antigen-specific IFN-γ response that was durable for 24 weeks, although of a lesser magnitude compared with historical data from HIV-uninfected subjects. The functional quality of the vaccine-induced T cell response in HIV-infected subjects was remarkably comparable with that observed in healthy HIV-uninfected controls, but less durable. Conclusion MVA85A is safe and immunogenic in healthy adults infected with HIV. Further safety and efficacy evaluation of this candidate vaccine in TB- and HIV-endemic areas is merited.


Vaccine | 2013

Comparing the safety and immunogenicity of a candidate TB vaccine MVA85A administered by intramuscular and intradermal delivery

Joel Meyer; Stephanie A. Harris; Iman Satti; Ian D. Poulton; Hazel C. Poyntz; Rachel Tanner; Rosalind Rowland; Kristin L. Griffiths; Helen A. Fletcher; Helen McShane

Highlights ► Candidate TB vaccine MVA85A is well tolerated intramuscularly or intradermally. ► Both routes are highly immunogenic. ► MVA85A-induced CD4+ T cell cytokine production was similar between the two routes.


Tuberculosis | 2014

Non-tuberculous mycobacteria have diverse effects on BCG efficacy against Mycobacterium tuberculosis

Hazel C. Poyntz; Elena Stylianou; Kristin L. Griffiths; Leanne Marsay; Anna M. Checkley; Helen McShane

Summary The efficacy of Bacillus Calmette-Guerin (BCG) vaccination in protection against pulmonary tuberculosis (TB) is highly variable between populations. One possible explanation for this variability is increased exposure of certain populations to non-tuberculous mycobacteria (NTM). This study used a murine model to determine the effect that exposure to NTM after BCG vaccination had on the efficacy of BCG against aerosol Mycobacterium tuberculosis challenge. The effects of administering live Mycobacterium avium (MA) by an oral route and killed MA by a systemic route on BCG-induced protection were evaluated. CD4+ and CD8+ T cell responses were profiled to define the immunological mechanisms underlying any effect on BCG efficacy. BCG efficacy was enhanced by exposure to killed MA administered by a systemic route; T helper 1 and T helper 17 responses were associated with increased protection. BCG efficacy was reduced by exposure to live MA administered by the oral route; T helper 2 cells were associated with reduced protection. These findings demonstrate that exposure to NTM can induce opposite effects on BCG efficacy depending on route of exposure and viability of NTM. A reproducible model of NTM exposure would be valuable in the evaluation of novel TB vaccine candidates.


PLOS ONE | 2011

Preclinical development of an in vivo BCG challenge model for testing candidate TB vaccine efficacy.

Angela M. Minassian; Edward O. Ronan; Hazel C. Poyntz; Adrian V. S. Hill; Helen McShane

There is an urgent need for an immunological correlate of protection against tuberculosis (TB) with which to evaluate candidate TB vaccines in clinical trials. Development of a human challenge model of Mycobacterium tuberculosis (M.tb) could facilitate the detection of such correlate(s). Here we propose a novel in vivo Bacille Calmette-Guérin (BCG) challenge model using BCG immunization as a surrogate for M.tb infection. Culture and quantitative PCR methods have been developed to quantify BCG in the skin, using the mouse ear as a surrogate for human skin. Candidate TB vaccines have been evaluated for their ability to protect against a BCG skin challenge, using this model, and the results indicate that protection against a BCG skin challenge is predictive of BCG vaccine efficacy against aerosol M.tb challenge. Translation of these findings to a human BCG challenge model could enable more rapid assessment and down selection of candidate TB vaccines and ultimately the identification of an immune correlate of protection.


Vaccine | 2015

Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A

Elena Stylianou; Kristin L. Griffiths; Hazel C. Poyntz; Rachel Harrington-Kandt; Matthew D. J. Dicks; Lisa Stockdale; G. Betts; Helen McShane

Highlights • Intranasal immunisation with ChAdOx1.85A induces strong T-cell responses.• ChAdOx1.85A boosted with MVA85A significantly improves the protective efficacy of BCG.• MVA85A boost is protective both after mucosal and systemic administration.


PLOS ONE | 2012

Optimising immunogenicity with viral vectors: mixing MVA and HAdV-5 expressing the mycobacterial antigen Ag85A in a single injection.

G. Betts; Hazel C. Poyntz; Elena Stylianou; Arturo Reyes-Sandoval; Matthew G. Cottingham; Adrian V. S. Hill; Helen McShane

The Bacillus Calmette - Guerin (BCG) vaccine provides a critical but limited defense against Mycobacterium tuberculosis (M.tb). More than 60 years after the widespread introduction of BCG, there is an urgent need for a better vaccine. A large body of pre-clinical research continues to support ongoing clinical trials to assess whether viral vectors expressing M.tb antigens that are shared by BCG and M.tb, can be used alongside BCG to enhance protection. A major focus involves using multiple unique viral vectors to limit anti-vector immunity and thereby enhance responses to the insert antigen delivered. The successful introduction of viral vector vaccines to target M.tb and other pathogens will be reliant on reducing the costs when using multiple vectors and inhibiting the development of unwanted anti-vector responses that interfere with the response to insert antigen. This study examines methods to reduce the logistical costs of vaccination by mixing different viral vectors that share the same insert antigen in one vaccine; and whether combining different viral vectors reduces anti-vector immunity to improve immunogenicity to the insert antigen. Here we show that a homologous prime-boost regimen with a mixture of MVA (Modified Vaccinia virus Ankara) and Ad5 (human adenovirus type 5) vectors both expressing Ag85A in a single vaccine preparation is able to reduce anti-vector immunity, compared with a homologous prime-boost regimen with either vector alone. However, the level of immunogenicity induced by the homologous mixture remained comparable to that induced with single viral vectors and was less immunogenic than a heterologous Ad5 prime-MVA-boost regimen. These findings advance the understanding of how anti-vector immunity maybe reduced in viral vector vaccination regimens. Furthermore, an insight is provided to the impact on vaccine immunogenicity from altering vaccination methods to reduce the logistical demands of using separate vaccine preparations in the field.


Human Vaccines & Immunotherapeutics | 2013

Safety and immunogenicity of an FP9-vectored candidate tuberculosis vaccine (FP85A), alone and with candidate vaccine MVA85A in BCG-vaccinated healthy adults: A phase I clinical trial

Rosalind Rowland; Ansar A. Pathan; Iman Satti; Ian D. Poulton; Magali Matsumiya; Megan Whittaker; Angela M. Minassian; Geraldine A. O'Hara; Matthew Hamill; Janet T. Scott; Stephanie A. Harris; Hazel C. Poyntz; Cynthia Bateman; Joel Meyer; Nicola Williams; Sarah C. Gilbert; Alison M. Lawrie; Adrian V. S. Hill; Helen McShane

The safety and immunogenicity of a new candidate tuberculosis (TB) vaccine, FP85A was evaluated alone and in heterologous prime-boost regimes with another candidate TB vaccine, MVA85A. This was an open label, non-controlled, non-randomized Phase I clinical trial. Healthy previously BCG-vaccinated adult subjects were enrolled sequentially into three groups and vaccinated with FP85A alone, or both FP85A and MVA85A, with a four week interval between vaccinations. Passive and active data on adverse events were collected. Immunogenicity was evaluated by Enzyme Linked Immunospot (ELISpot), flow cytometry and Enzyme Linked Immunosorbent assay (ELISA). Most adverse events were mild and there were no vaccine-related serious adverse events. FP85A vaccination did not enhance antigen 85A-specific cellular immunity. When MVA85A vaccination was preceded by FP85A vaccination, cellular immune responses were lower compared with when MVA85A vaccination was the first immunisation. MVA85A vaccination, but not FP85A vaccination, induced anti-MVA IgG antibodies. Both MVA85A and FP85A vaccinations induced anti-FP9 IgG antibodies. In conclusion, FP85A vaccination was well tolerated but did not induce antigen-specific cellular immune responses. We hypothesize that FP85A induced anti-FP9 IgG antibodies with cross-reactivity for MVA85A, which may have mediated inhibition of the immune response to subsequent MVA85A. ClinicalTrials.gov identification number: NCT00653770


PLOS ONE | 2013

Cholera Toxin Enhances Vaccine-Induced Protection against Mycobacterium Tuberculosis Challenge in Mice

Kristin L. Griffiths; Elena Stylianou; Hazel C. Poyntz; G. Betts; Helen A. Fletcher; Helen McShane

Interleukin (IL)-17 is emerging as an important cytokine in vaccine-induced protection against tuberculosis disease in animal models. Here we show that compared to parenteral delivery, BCG delivered mucosally enhances cytokine production, including interferon gamma and IL-17, in the lungs. Furthermore, we find that cholera toxin, delivered mucosally along with BCG, further enhances IL-17 production by CD4+ T cells over mucosal BCG alone both in the lungs and systemically. This boosting effect of CT is also observed using a vaccine regimen of BCG followed by the candidate vaccine MVA85A. Using a murine Mycobacterium tuberculosis (M.tb) aerosol challenge model, we demonstrate the ability of cholera toxin delivered at the time of a priming BCG vaccination to improve protection against tuberculosis disease in a manner at least partially dependent on the observed increase in IL-17. This observed increase in IL-17 in the lungs has no adverse effect on lung pathology following M.tb challenge, indicating that IL-17 can safely be boosted in murine lungs in a vaccine/M.tb challenge setting.


Scientific Reports | 2018

Development of a Molecular Adjuvant to Enhance Antigen-Specific CD8+ T Cell Responses

Benedict R. Halbroth; Sarah Sebastian; Hazel C. Poyntz; Migena Bregu; Matthew G. Cottingham; Adrian V. S. Hill; Alexandra J. Spencer

Despite promising progress in malaria vaccine development, an efficacious subunit vaccine against P. falciparum remains to be licensed and deployed. This study aimed to improve on the immunogenicity of the leading liver-stage vaccine candidate (ChAd63-MVA ME-TRAP), known to confer protection by eliciting high levels of antigen-specific CD8+ T cells. We previously showed fusion of ME-TRAP to the human MHC class II invariant chain (Ii) could enhance CD8+ T cell responses in non-human primates, but did not progress to clinical testing due to potential risk of auto-immunity by vaccination of humans with a self-antigen. Initial immunogenicity analyses of ME-TRAP fused to subdomains of the Ii showed that the Ii transmembrane domain alone can enhance CD8+ T cell responses. Subsequently, truncated Ii sequences with low homology to human Ii were developed and shown to enhance CD8+ T cell responses. By systematically mutating the TM domain sequence, multimerization of the Ii chain was shown to be important for immune enhancement. We subsequently identified several proteins from a variety of microbial pathogens with similar characteristics, that also enhance the CD8+ T cell response and could therefore be used in viral vector vaccines when potent cell mediated immunity is required.

Collaboration


Dive into the Hazel C. Poyntz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge