Heather S. Smallwood
Pacific Northwest National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heather S. Smallwood.
Journal of Biological Chemistry | 2006
Liang Shi; Joshua N. Adkins; James R. Coleman; Athena A. Schepmoes; Alice Dohnkova; Heather M. Mottaz; Angela D. Norbeck; Samuel O. Purvine; Nathan P. Manes; Heather S. Smallwood; Haixing Wang; John Forbes; Philippe Gros; Sergio Uzzau; Karin D. Rodland; Fred Heffron; Richard D. Smith; Thomas C. Squier
To evade host resistance mechanisms, Salmonella enterica serovar Typhimurium (STM), a facultative intracellular pathogen, must alter its proteome following macrophage infection. To identify new colonization and virulence factors that mediate STM pathogenesis, we have isolated STM cells from RAW 264.7 macrophages at various time points following infection and used a liquid chromatography-mass spectrometry-based proteomic approach to detect the changes in STM protein abundance. Because host resistance to STM infection is strongly modulated by the expression of a functional host-resistant regulator, i.e. natural resistance-associated macrophage protein 1 (Nramp1, also called Slc11a1), we have also examined the effects of Nramp1 activity on the changes of STM protein abundances. A total of 315 STM proteins have been identified from isolated STM cells, which are largely housekeeping proteins whose abundances remain relatively constant during the time course of infection. However, 39 STM proteins are strongly induced after infection, suggesting their involvement in modulating colonization and infection. Of the 39 induced proteins, 6 proteins are specifically modulated by Nramp1 activity, including STM3117, as well as STM3118-3119 whose time-dependent abundance changes were confirmed using Western blot analysis. Deletion of the gene encoding STM3117 resulted in a dramatic reduction in the ability of STM to colonize wild-type RAW 264.7 macrophages, demonstrating a critical involvement of STM3117 in promoting the replication of STM inside macrophages. The predicted function common for STM3117-3119 is biosynthesis and modification of the peptidoglycan layer of the STM cell wall.
Infection and Immunity | 2009
Liang Shi; Saiful M. Chowdhury; Heather S. Smallwood; Hyunjin Yoon; Heather M. Mottaz-Brewer; Angela D. Norbeck; Jason E. McDermott; Therese R. Clauss; Fred Heffron; Richard D. Smith; Joshua N. Adkins
ABSTRACT To investigate the extent to which macrophages respond to Salmonella infection, we infected RAW 264.7 macrophages with Salmonella enterica serotype Typhimurium and analyzed macrophage proteins at various time points following infection by using a global proteomic approach. A total of 1,006 macrophage and 115 Salmonella proteins were identified with high confidence. Most of the Salmonella proteins were observed in the late stage of the infection time course, which is consistent with the fact that the bacterial cells proliferate inside RAW 264.7 macrophages. The peptide abundances of most of the identified macrophage proteins remained relatively constant over the time course of infection. Compared to those of the control, the peptide abundances of 244 macrophage proteins (i.e., 24% of the total identified macrophage proteins) changed significantly after infection. The functions of these Salmonella-affected macrophage proteins were diverse, including production of antibacterial nitric oxide (i.e., inducible nitric oxide synthase), production of prostaglandin H2 (i.e., cyclooxygenase 2), and regulation of intracellular traffic (e.g., sorting nexin 5 [SNX5], SNX6, and SNX9). Diverse functions of the Salmonella-affected macrophage proteins demonstrate a global macrophage response to Salmonella infection. Western blot analysis not only confirmed the proteomic results for a selected set of proteins but also revealed that (i) the protein abundance of mitochondrial superoxide dismutase increased following macrophage infection, indicating an infection-induced oxidative stress in mitochondria, and (ii) in contrast to infection of macrophages by wild-type Salmonella, infection by the sopB deletion mutant had no negative impact on the abundance of SNX6, suggesting a role for SopB in regulating the abundance of SNX6.
Biochemistry | 2011
Heather S. Smallwood; Daniel Lopez-Ferrer; Thomas C. Squier
Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3-4 months) and aged (14-15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice. Collectively, these results indicate that macrophages isolated from old mice are in a preactivated state that enhances their sensitivities to LPS exposure. The hyper-responsive activation of macrophages in aged animals may act to minimize infection by general bacterial threats that arise due to age-dependent declines in adaptive immunity. However, this hypersensitivity and the associated increase in the level of formation of reactive oxygen species are likely to contribute to observed age-dependent increases in the level of oxidative damage that underlie many diseases of the elderly.
Analytical Chemistry | 2009
Daniel Lopez-Ferrer; Kim K. Hixson; Heather S. Smallwood; Thomas C. Squier; Konstantinos Petritis; Richard D. Smith
A new method that uses immobilized trypsin concomitant with ultrasonic irradiation results in ultrarapid digestion and more thorough (18)O labeling for quantitative protein comparisons. The method was reproducible and provided effective digestions within <1 min with lower amounts of enzyme, compared to traditional methods. This method was demonstrated for digestion of both simple and complex protein mixtures, including bovine serum albumin, a global proteome extract from the bacteria Shewanella oneidensis, and mouse plasma, as well as (18)O labeling of complex protein mixtures, validating this method for differential proteomic measurements. This approach is simple, reproducible, cost-effective, rapid, and well suited for automation.
Journal of the American Society for Mass Spectrometry | 2010
Natacha M. Lourette; Heather S. Smallwood; Si Wu; Errol W. Robinson; Thomas C. Squier; Richard D. Smith; Ljiljana Paša-Tolić
A liquid chromatography-mass spectrometry (LC-MS)-based approach for characterizing the degree of nitration and oxidation of intact calmodulin (CaM) has been used to resolve ∼250 CaM oxiforms using only 500 ng of protein. The analysis was based on high-resolution data of the intact CaM isoforms obtained by Fourier-transform ion cyclotron resonance mass spectrometry (FTICR MS) coupled with an on-line reversed-phase LC separation. Tentative identifications of post-translational modifications (PTMs), such as oxidation or nitration, have been assigned by matching observed protein mass to a database containing all theoretically predicted oxidation products of CaM and verified through a combination of tryptic peptide information (generated from bottom-up analyses) and on-line collisionally induced dissociation (CID) tandem mass spectrometry (MS/MS) at the intact protein level. The reduction in abundance and diversity of oxidatively modified CaM (i.e., nitrated tyrosines and oxidized methionines) induced by macrophage activation has been explored and semiquantified for different oxidation degrees (i.e., no oxidation, moderate, and high oxidation). This work demonstrates the power of the top-down approach to identify and quantify hundreds of combinations of PTMs for single protein target such as CaM and implicate competing repair and peptidase activities to modulate cellular metabolism in response to oxidative stress.
PLOS Pathogens | 2015
Susu Duan; Victoria A. Meliopoulos; Jennifer L. McClaren; Xi Zhi J. Guo; Catherine J. Sanders; Heather S. Smallwood; Richard J. Webby; Stacey Schultz-Cherry; Peter C. Doherty; Paul G. Thomas
The recent emergence of a novel H7N9 influenza A virus (IAV) causing severe human infections in China raises concerns about a possible pandemic. The lack of pre-existing neutralizing antibodies in the broader population highlights the potential protective role of IAV-specific CD8+ cytotoxic T lymphocyte (CTL) memory specific for epitopes conserved between H7N9 and previously encountered IAVs. In the present study, the heterosubtypic immunity generated by prior H9N2 or H1N1 infections significantly, but variably, reduced morbidity and mortality, pulmonary virus load and time to clearance in mice challenged with the H7N9 virus. In all cases, the recall of established CTL memory was characterized by earlier, greater airway infiltration of effectors targeting the conserved or cross-reactive H7N9 IAV peptides; though, depending on the priming IAV, each case was accompanied by distinct CTL epitope immunodominance hierarchies for the prominent KbPB1703, DbPA224, and DbNP366 epitopes. While the presence of conserved, variable, or cross-reactive epitopes between the priming H9N2 and H1N1 and the challenge H7N9 IAVs clearly influenced any change in the immunodominance hierarchy, the changing patterns were not tied solely to epitope conservation. Furthermore, the total size of the IAV-specific memory CTL pool after priming was a better predictor of favorable outcomes than the extent of epitope conservation or secondary CTL expansion. Modifying the size of the memory CTL pool significantly altered its subsequent protective efficacy on disease severity or virus clearance, confirming the important role of heterologous priming. These findings establish that both the protective efficacy of heterosubtypic immunity and CTL immunodominance hierarchies are reflective of the immunological history of the host, a finding that has implications for understanding human CTL responses and the rational design of CTL-mediated vaccines.
Chemical Research in Toxicology | 2009
Heather S. Smallwood; Daniel Lopez-Ferrer; P. Elis Eberlein; David J. Watson; Thomas C. Squier
Understanding the molecular mechanisms that modulate macrophage radioresistance is necessary for the development of effective radiation therapies, as tumor-associated macrophages promote both angiogenesis and matrix remodeling that, in turn, enhance tumor metastasis. In this respect, we have identified a dose-dependent increase in the abundance (i.e., expression level) of the calcium regulatory protein calmodulin (CaM) in RAW 264.7 macrophages upon irradiation. At low doses of irradiation there are minimal changes in the abundance of other cellular proteins detected using mass spectrometry, indicating that increases in CaM levels are part of a specific radiation-dependent cellular response. CaM overexpression results in increased macrophage survival following radiation exposure, acting to diminish the sensitivity to low-dose radiation exposures. Following macrophage irradiation, increases in CaM abundance also result in an increase in the number of phosphorylated histone H2AX foci, associated with DNA repair, with no change in the extent of double-stranded DNA damage. In comparison, when nuclear factor kappaB (NFkappaB)-dependent pathways are inhibited, through the expression of a dominant-negative IkappaB construct, there is no significant increase in phosphorylated histone H2AX foci upon irradiation. These results indicate that the molecular basis for the up-regulation of histone H2AX-mediated DNA repair pathways is not the result of nonspecific NFkappaB-dependent pathways or a specific threshold of DNA damage. Rather, increases in CaM abundance act to minimize the low-dose hypersensitivity to radiation by enhancing macrophage radioresistance through processes that include the up-regulation of DNA repair pathways involving histone H2AX phosphorylation.
Mbio | 2014
Christine M. Oshansky; S S Wong; Trushar Jeevan; Heather S. Smallwood; Richard J. Webby; Shira C. Shafir; Paul G. Thomas
ABSTRACT Avian species are reservoirs of influenza A viruses and could harbor viruses with significant pandemic potential. We examined the antibody and cellular immune responses to influenza A viruses in field or laboratory workers with a spectrum of occupational exposure to avian species for evidence of zoonotic infections. We measured the seroprevalence and T cell responses among 95 individuals with various types and degrees of prior field or laboratory occupational exposure to wild North American avian species using whole blood samples collected in 2010. Plasma samples were tested using endpoint enzyme-linked immunosorbent assay (ELISA) and hemagglutination (HA) inhibition (HAI) assays to subtypes H3, H4, H5, H6, H7, H8, and H12 proteins. Detectable antibodies were found against influenza HA antigens in 77% of individuals, while 65% of individuals tested had measurable T cell responses (gamma interferon [IFN-γ] enzyme-linked immunosorbent spot assay [ELISPOT]) to multiple HA antigens of avian origin. To begin defining the observed antibody specificities, Spearman rank correlation analysis showed that ELISA responses, which measure both head- and stalk-binding antibodies, do not predict HAI reactivities, which measure primarily head-binding antibodies. This result suggests that ELISA titers can report cross-reactivity based on the levels of non-head-binding responses. However, the strongest positive correlate of HA-specific ELISA antibody titers was receipt of seasonal influenza virus vaccination. Occupational exposure was largely uncorrelated with serological measures, with the exception of individuals exposed to poultry, who had higher levels of H7-specific antibodies than non-poultry-exposed individuals. While the cohort had antibody and T cell reactivity to a broad range of influenza viruses, only occupational exposure to poultry was associated with a significant difference in antibody levels to a specific subtype (H7). There was no evidence that T cell assays provided greater specificity for the detection of zoonotic infection. However, influenza vaccination appears to promote cross-reactive antibodies and may provide enhanced protection to novel influenza viruses. IMPORTANCE Annual vaccinations are necessary to ameliorate influenza disease due to drifted viral variants that emerge in the population. Major shifts in the antigenicity of influenza viruses can result in immunologically distinct viruses that can cause more severe disease in humans. Historically, genetic reassortment between avian, swine, or human influenza viruses has caused influenza pandemics in humans several times in the last century. Therefore, it is important to design vaccines to elicit broad protective responses to influenza infections. Because avian influenza viruses have an important role in emerging infections, we tested whether occupational exposure to birds can elicit immune responses to avian influenza viruses in humans. Instead of a specific occupational exposure, the strongest association of enhanced cross-reactive antibody responses was receipt of seasonal influenza vaccination. Therefore, individuals with preexisting immune responses to seasonal human influenza viruses have substantial cross-reactive antibody and T cell responses that may lead to enhanced protection to novel influenza viruses. Annual vaccinations are necessary to ameliorate influenza disease due to drifted viral variants that emerge in the population. Major shifts in the antigenicity of influenza viruses can result in immunologically distinct viruses that can cause more severe disease in humans. Historically, genetic reassortment between avian, swine, or human influenza viruses has caused influenza pandemics in humans several times in the last century. Therefore, it is important to design vaccines to elicit broad protective responses to influenza infections. Because avian influenza viruses have an important role in emerging infections, we tested whether occupational exposure to birds can elicit immune responses to avian influenza viruses in humans. Instead of a specific occupational exposure, the strongest association of enhanced cross-reactive antibody responses was receipt of seasonal influenza vaccination. Therefore, individuals with preexisting immune responses to seasonal human influenza viruses have substantial cross-reactive antibody and T cell responses that may lead to enhanced protection to novel influenza viruses.
Biochemistry | 2003
Ryan K. Bartlett; Ramona J. Bieber Urbauer; Asokan Anbanandam; Heather S. Smallwood; Jeffrey L. Urbauer; Thomas C. Squier
Immunity | 2014
Brendan E. Russ; Moshe Olshanksy; Heather S. Smallwood; Jasmine Li; Alice E. Denton; Julia E. Prier; Angus T. Stock; Hayley A. Croom; Jolie G. Cullen; Michelle L.T. Nguyen; Stephanie Rowe; Matthew R. Olson; David B. Finkelstein; Anne Kelso; Paul G. Thomas; Terry Speed; Sudha Rao; Stephen J. Turner