Hee-Woong Lim
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hee-Woong Lim.
Cell Stem Cell | 2013
Ruiyu Xie; Logan J. Everett; Hee-Woong Lim; Nisha A. Patel; Jonathan Schug; Evert Kroon; Olivia Kelly; Allen Wang; Kevin A. D’Amour; Allan J. Robins; Kyoung-Jae Won; Klaus H. Kaestner; Maike Sander
Embryonic development is characterized by dynamic changes in gene expression, yet the role of chromatin remodeling in these cellular transitions remains elusive. To address this question, we profiled the transcriptome and select chromatin modifications at defined stages during pancreatic endocrine differentiation of human embryonic stem cells. We identify removal of Polycomb group (PcG)-mediated repression on stage-specific genes as a key mechanism for the induction of developmental regulators. Furthermore, we discover that silencing of transitory genes during lineage progression associates with reinstatement of PcG-dependent repression. Significantly, in vivo- but not in vitro-differentiated endocrine cells exhibit close similarity to primary human islets in regard to transcriptome and chromatin structure. We further demonstrate that endocrine cells produced in vitro do not fully eliminate PcG-mediated repression on endocrine-specific genes, probably contributing to their malfunction. These studies reveal dynamic chromatin remodeling during developmental lineage progression and identify possible strategies for improving cell differentiation in culture.
Cell Metabolism | 2014
Matthew Harms; Jeff Ishibashi; Wenshan Wang; Hee-Woong Lim; Susumu Goyama; Tomohiko Sato; Mineo Kurokawa; Kyoung-Jae Won; Patrick Seale
Prdm16 is a transcription factor that regulates the thermogenic gene program in brown and beige adipocytes. However, whether Prdm16 is required for the development or physiological function of brown adipose tissue (BAT) in vivo has been unclear. By analyzing mice that selectively lacked Prdm16 in the brown adipose lineage, we found that Prdm16 was dispensable for embryonic BAT development. However, Prdm16 was required in young mice to suppress the expression of white-fat-selective genes in BAT through recruitment of the histone methyltransferase Ehmt1. Additionally, Prdm16 deficiency caused a severe adult-onset decline in the thermogenic character of interscapular BAT. This resulted in BAT dysfunction and cold sensitivity but did not predispose the animals to obesity. Interestingly, the loss of brown fat identity due to ablation of Prdm16 was accelerated by concurrent deletion of the closely related Prdm3 gene. Together, these results show that Prdm16 and Prdm3 control postnatal BAT identity and function.
Molecular Cell | 2013
Zheng Sun; Dan Feng; Bin Fang; Shannon E. Mullican; Seo-Hee You; Hee-Woong Lim; Logan J. Everett; Christopher S. Nabel; Yun Li; Vignesh Selvakumaran; Kyoung-Jae Won; Mitchell A. Lazar
Histone deacetylases (HDACs) are believed to regulate gene transcription by catalyzing deacetylation reactions. HDAC3 depletion in mouse liver upregulates lipogenic genes and results in severe hepatosteatosis. Here we show that pharmacologic HDAC inhibition in primary hepatocytes causes histone hyperacetylation but does not upregulate expression of HDAC3 target genes. Meanwhile, deacetylase-dead HDAC3 mutants can rescue hepatosteatosis and repress lipogenic genes expression in HDAC3-depleted mouse liver, demonstrating that histone acetylation is insufficient to activate gene transcription. Mutations abolishing interactions with the nuclear receptor corepressor (NCOR or SMRT) render HDAC3 nonfunctional in vivo. Additionally, liver-specific knockout of NCOR, but not SMRT, causes metabolic and transcriptomal alterations resembling those of mice without hepatic HDAC3, demonstrating that interaction with NCOR is essential for deacetylase-independent function of HDAC3. These findings highlight nonenzymatic roles of a major HDAC in transcriptional regulation in vivo and warrant reconsideration of the mechanism of action of HDAC inhibitors.
Nature Structural & Molecular Biology | 2013
Seo-Hee You; Hee-Woong Lim; Zheng Sun; Molly Broache; Kyoung-Jae Won; Mitchell A. Lazar
Histone deacetylase 3 (HDAC3) is an epigenome-modifying enzyme that is required for normal mouse development and tissue-specific functions. In vitro, HDAC3 protein itself has minimal enzyme activity but gains its histone-deacetylation function from stable association with the conserved deacetylase-activating domain (DAD) contained in nuclear receptor co-repressors NCOR1 and SMRT. Here we show that HDAC3 enzyme activity is undetectable in mice bearing point mutations in the DAD of both NCOR1 and SMRT (NS-DADm), despite having normal levels of HDAC3 protein. Local histone acetylation is increased, and genomic HDAC3 recruitment is reduced though not abrogated. Notably, NS-DADm mice are born and live to adulthood, whereas genetic deletion of HDAC3 is embryonic lethal. These findings demonstrate that nuclear receptor co-repressors are required for HDAC3 enzyme activity in vivo and suggest that a deacetylase-independent function of HDAC3 may be required for life.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Wenshan Wang; Megan Kissig; Sona Rajakumari; Li Huang; Hee-Woong Lim; Kyoung-Jae Won; Patrick Seale
Significance High levels of brown/beige fat activity protects animals against metabolic disease, but there has been little known about the precursor cells that mediate the expansion of brown or beige fat. We discovered that early B-cell factor 2 (Ebf2), a transcription factor, is selectively expressed in brown and beige fat cell precursors. Through purification of Ebf2+ cells, we identified a gene profile of brown fat precursors that can be used to distinguish these cells from other developmentally related cell types. Importantly, Ebf2 was also found to regulate the gene expression profile of brown fat precursor cells. Taken together, this study identifies Ebf2 as a highly specific marker of brown and beige preadipose cells and reveals that Ebf2 functions to control brown preadipose cell identity. Brown adipocytes and muscle and dorsal dermis descend from precursor cells in the dermomyotome, but the factors that regulate commitment to the brown adipose lineage are unknown. Here, we prospectively isolated and determined the molecular profile of embryonic brown preadipose cells. Brown adipogenic precursor activity in embryos was confined to platelet-derived growth factor α+, myogenic factor 5Cre-lineage–marked cells. RNA-sequence analysis identified early B-cell factor 2 (Ebf2) as one of the most selectively expressed genes in this cell fraction. Importantly, Ebf2-expressing cells purified from Ebf2GFP embryos or brown fat tissue did not express myoblast or dermal cell markers and uniformly differentiated into brown adipocytes. Interestingly, Ebf2-expressing cells from white fat tissue in adult animals differentiated into brown-like (or beige) adipocytes. Loss of Ebf2 in brown preadipose cells reduced the expression levels of brown preadipose-signature genes, whereas ectopic Ebf2 expression in myoblasts activated brown preadipose-specific genes. Altogether, these results indicate that Ebf2 specifically marks and regulates the molecular profile of brown preadipose cells.
Genome Research | 2015
Hee-Woong Lim; N. Henriette Uhlenhaut; Alexander Rauch; Juliane Weiner; Sabine Hübner; Norbert Hubner; Kyoung-Jae Won; Mitchell A. Lazar; Jan Tuckermann; David J. Steger
Glucocorticoids (GCs) are commonly prescribed drugs, but their anti-inflammatory benefits are mitigated by metabolic side effects. Their transcriptional effects, including tissue-specific gene activation and repression, are mediated by the glucocorticoid receptor (GR), which is known to bind as a homodimer to a palindromic DNA sequence. Using ChIP-exo in mouse liver under endogenous corticosterone exposure, we report here that monomeric GR interaction with a half-site motif is more prevalent than homodimer binding. Monomers colocalize with lineage-determining transcription factors in both liver and primary macrophages, and the GR half-site motif drives transcription, suggesting that monomeric binding is fundamental to GRs tissue-specific functions. In response to exogenous GC in vivo, GR dimers assemble on chromatin near ligand-activated genes, concomitant with monomer evacuation of sites near repressed genes. Thus, pharmacological GCs mediate gene expression by favoring GR homodimer occupancy at classic palindromic sites at the expense of monomeric binding. The findings have important implications for improving therapies that target GR.
Genes & Development | 2015
Matthew Harms; Hee-Woong Lim; Yugong Ho; Suzanne N. Shapira; Jeff Ishibashi; Sona Rajakumari; David J. Steger; Mitchell A. Lazar; Kyoung-Jae Won; Patrick Seale
PR (PRD1-BF1-RIZ1 homologous) domain-containing 16 (PRDM16) drives a brown fat differentiation program, but the mechanisms by which PRDM16 activates brown fat-selective genes have been unclear. Through chromatin immunoprecipitation (ChIP) followed by deep sequencing (ChIP-seq) analyses in brown adipose tissue (BAT), we reveal that PRDM16 binding is highly enriched at a broad set of brown fat-selective genes. Importantly, we found that PRDM16 physically binds to MED1, a component of the Mediator complex, and recruits it to superenhancers at brown fat-selective genes. PRDM16 deficiency in BAT reduces MED1 binding at PRDM16 target sites and causes a fundamental change in chromatin architecture at key brown fat-selective genes. Together, these data indicate that PRDM16 controls chromatin architecture and superenhancer activity in BAT.
Genes & Development | 2014
Sonia E. Step; Hee-Woong Lim; Jill M. Marinis; Andreas Prokesch; David J. Steger; Seo-Hee You; Kyoung-Jae Won; Mitchell A. Lazar
Rosiglitazone (rosi) is a powerful insulin sensitizer, but serious toxicities have curtailed its widespread clinical use. Rosi functions as a high-affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ), the adipocyte-predominant nuclear receptor (NR). The classic model, involving binding of ligand to the NR on DNA, explains positive regulation of gene expression, but ligand-dependent repression is not well understood. We addressed this issue by studying the direct effects of rosi on gene transcription using global run-on sequencing (GRO-seq). Rosi-induced changes in gene body transcription were pronounced after 10 min and correlated with steady-state mRNA levels as well as with transcription at nearby enhancers (enhancer RNAs [eRNAs]). Up-regulated eRNAs occurred almost exclusively at PPARγ-binding sites, to which rosi treatment recruited coactivators, including MED1, p300, and CBP. In contrast, transcriptional repression by rosi involved a loss of coactivators from eRNA sites devoid of PPARγ and enriched for other transcription factors, including AP-1 factors and C/EBPs. Thus, rosi activates and represses transcription by fundamentally different mechanisms that could inform the future development of anti-diabetic drugs.
Molecular metabolism | 2016
Rachel R. Stine; Suzanne N. Shapira; Hee-Woong Lim; Jeff Ishibashi; Matthew Harms; Kyoung-Jae Won; Patrick Seale
Objective The induction of beige/brite adipose cells in white adipose tissue (WAT) is associated with protection against high fat diet-induced obesity and insulin resistance in animals. The helix-loop-helix transcription factor Early B-Cell Factor-2 (EBF2) regulates brown adipose tissue development. Here, we asked if EBF2 regulates beige fat cell biogenesis and protects animals against obesity. Methods In addition to primary cell culture studies, we used Ebf2 knockout mice and mice overexpressing EBF2 in the adipose tissue to study the necessity and sufficiency of EBF2 to induce beiging in vivo. Results We found that EBF2 is required for beige adipocyte development in mice. Subcutaneous WAT or primary adipose cell cultures from Ebf2 knockout mice did not induce Uncoupling Protein 1 (UCP1) or a thermogenic program following adrenergic stimulation. Conversely, over-expression of EBF2 in adipocyte cultures induced UCP1 expression and a brown-like/beige fat-selective differentiation program. Transgenic expression of Ebf2 in adipose tissues robustly stimulated beige adipocyte development in the WAT of mice, even while housed at thermoneutrality. EBF2 overexpression was sufficient to increase mitochondrial function in WAT and protect animals against high fat diet-induced weight gain. Conclusions Taken together, our results demonstrate that EBF2 controls the beiging process and suggest that activation of EBF2 in WAT could be used to reduce obesity.
Nature | 2017
Matthew J. Emmett; Hee-Woong Lim; Jennifer Jager; Hannah J. Richter; Marine Adlanmerini; Lindsey C. Peed; Erika R. Briggs; David J. Steger; Tao Ma; Carrie A. Sims; Joseph A. Baur; Liming Pei; Kyoung-Jae Won; Patrick Seale; Zachary Gerhart-Hines; Mitchell A. Lazar
Brown adipose tissue is a thermogenic organ that dissipates chemical energy as heat to protect animals against hypothermia and to counteract metabolic disease. However, the transcriptional mechanisms that determine the thermogenic capacity of brown adipose tissue before environmental cold are unknown. Here we show that histone deacetylase 3 (HDAC3) is required to activate brown adipose tissue enhancers to ensure thermogenic aptitude. Mice with brown adipose tissue-specific genetic ablation of HDAC3 become severely hypothermic and succumb to acute cold exposure. Uncoupling protein 1 (UCP1) is nearly absent in brown adipose tissue lacking HDAC3, and there is also marked downregulation of mitochondrial oxidative phosphorylation genes resulting in diminished mitochondrial respiration. Remarkably, although HDAC3 acts canonically as a transcriptional corepressor, it functions as a coactivator of oestrogen-related receptor α (ERRα) in brown adipose tissue. HDAC3 coactivation of ERRα is mediated by deacetylation of PGC-1α and is required for the transcription of Ucp1, Ppargc1a (encoding PGC-1α), and oxidative phosphorylation genes. Importantly, HDAC3 promotes the basal transcription of these genes independently of adrenergic stimulation. Thus, HDAC3 uniquely primes Ucp1 and the thermogenic transcriptional program to maintain a critical capacity for thermogenesis in brown adipose tissue that can be rapidly engaged upon exposure to dangerously cold temperature.