Jeff Ishibashi
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jeff Ishibashi.
Journal of Clinical Investigation | 2011
Patrick Seale; Heather M. Conroe; Jennifer L. Estall; Shingo Kajimura; Andrea Frontini; Jeff Ishibashi; Paul Cohen; Saverio Cinti; Bruce M. Spiegelman
The white adipose organ is composed of both subcutaneous and several intra-abdominal depots. Excess abdominal adiposity is a major risk factor for metabolic disease in rodents and humans, while expansion of subcutaneous fat does not carry the same risks. Brown adipose produces heat as a defense against hypothermia and obesity, and the appearance of brown-like adipocytes within white adipose tissue depots is associated with improved metabolic phenotypes. Thus, understanding the differences in cell biology and function of these different adipose cell types and depots may be critical to the development of new therapies for metabolic disease. Here, we found that Prdm16, a brown adipose determination factor, is selectively expressed in subcutaneous white adipocytes relative to other white fat depots in mice. Transgenic expression of Prdm16 in fat tissue robustly induced the development of brown-like adipocytes in subcutaneous, but not epididymal, adipose depots. Prdm16 transgenic mice displayed increased energy expenditure, limited weight gain, and improved glucose tolerance in response to a high-fat diet. shRNA-mediated depletion of Prdm16 in isolated subcutaneous adipocytes caused a sharp decrease in the expression of thermogenic genes and a reduction in uncoupled cellular respiration. Finally, Prdm16 haploinsufficiency reduced the brown fat phenotype in white adipose tissue stimulated by β-adrenergic agonists. These results demonstrate that Prdm16 is a cell-autonomous determinant of a brown fat-like gene program and thermogenesis in subcutaneous adipose tissues.
Nature Cell Biology | 2008
Iain W. McKinnell; Jeff Ishibashi; Fabien Le Grand; Vincent G. Punch; Gregory C. Addicks; Jack Greenblatt; F. Jeffrey Dilworth; Michael A. Rudnicki
Satellite cells purified from adult skeletal muscle can participate extensively in muscle regeneration and can also re-populate the satellite cell pool, suggesting that they have direct therapeutic potential for treating degenerative muscle diseases. The paired-box transcription factor Pax7 is required for satellite cells to generate committed myogenic progenitors. In this study we undertook a multi-level approach to define the role of Pax7 in satellite cell function. Using comparative microarray analysis, we identified several novel and strongly regulated targets; in particular, we identified Myf5 as a gene whose expression was regulated by Pax7. Using siRNA, fluorescence-activated cell sorting (FACS) and chromatin immunoprecipitation (ChIP) studies we confirmed that Myf5 is directly regulated by Pax7 in myoblasts derived from satellite cells. Tandem affinity purification (TAP) and mass spectrometry were used to purify Pax7 together with its co-factors. This revealed that Pax7 associates with the Wdr5–Ash2L–MLL2 histone methyltransferase (HMT) complex that directs methylation of histone H3 lysine 4 (H3K4, refs 4–10). Binding of the Pax7–HMT complex to Myf5 resulted in H3K4 tri-methylation of surrounding chromatin. Thus, Pax7 induces chromatin modifications that stimulate transcriptional activation of target genes to regulate entry into the myogenic developmental programme.
Science | 2010
Jeff Ishibashi; Patrick Seale
Prostaglandins promote the development of thermogenic beige fat in mice and may be a therapeutic approach to treat obesity. How can we decrease the bodys energy efficiency? The answer to this could be used to fight the exploding obesity crisis. Our ability to accumulate and retain energy reserves once provided a survival advantage. However, these ingrained energy-conservation pathways are now driving unprecedented weight gain in modern societies where calorie-dense food pervades. Burning off excess fuel (analogous to heating a house in winter with the windows open) may be an effective therapeutic avenue to reduce obesity when diet and exercise are not enough. On page 1158 in this issue, Vegiopoulos et al. demonstrate that the fatty acid derivatives called prostaglandins encourage adipocytes (fat cells) to do exactly this—waste energy through increased heat production (1).
Cell Metabolism | 2013
Sona Rajakumari; Jun Wu; Jeff Ishibashi; Hee Woong Lim; An Hoa Giang; Kyoung-Jae Won; Randall R. Reed; Patrick Seale
The master transcription factor Pparγ regulates the general differentiation program of both brown and white adipocytes. However, it has been unclear whether Pparγ also controls fat lineage-specific characteristics. Here, we show that early B cell factor-2 (Ebf2) regulates Pparγ binding activity to determine brown versus white adipocyte identity. The Ebf DNA-binding motif was highly enriched within brown adipose-specific Pparγ binding sites that we identified by genome-wide ChIP-Seq. Of the Ebf isoforms, Ebf2 was selectively expressed in brown relative to white adipocytes and was bound at brown adipose-specific Pparγ target genes. When expressed in myoblasts or white preadipose cells, Ebf2 recruited Pparγ to its brown-selective binding sites and reprogrammed cells to a brown fat fate. Brown adipose cells and tissue from Ebf2-deficient mice displayed a loss of brown-specific characteristics and thermogenic capacity. Together, these results identify Ebf2 as a key transcriptional regulator of brown fat cell fate and function.
PLOS Biology | 2004
Patrick Seale; Jeff Ishibashi; Anthony Scimè; Michael A. Rudnicki
CD45+:Sca1+ adult stem cells isolated from uninjured muscle do not display any myogenic potential, whereas those isolated from regenerating muscle give rise to myoblasts expressing the paired-box transcription factor Pax7 and the bHLH factors Myf5 and MyoD. By contrast, CD45+:Sca1+ isolated from injured Pax7 −/− muscle were incapable of forming myoblasts. Infection of CD45+:Sca1+ cells from uninjured muscle with retrovirus expressing Pax7 efficiently activated the myogenic program. The resulting myoblasts expressed Myf5 and MyoD and differentiated into myotubes that expressed myogenin and myosin heavy chain. Infection of CD45−:Sca1− cells from Pax7 −/− muscle similarly gave rise to myoblasts. Notably, infection of Pax7-deficient muscle with adenoviral Pax7 resulted in the de novo formation of regenerated myofibers. Taken together, these results indicate that Pax7 is necessary and sufficient to induce the myogenic specification of CD45+ stem cells resident in adult skeletal muscle. Moreover, these experiments suggest that viral transduction of Pax7 is a potential therapeutic approach for the treatment of neuromuscular degenerative diseases.
Cell Metabolism | 2014
Matthew Harms; Jeff Ishibashi; Wenshan Wang; Hee-Woong Lim; Susumu Goyama; Tomohiko Sato; Mineo Kurokawa; Kyoung-Jae Won; Patrick Seale
Prdm16 is a transcription factor that regulates the thermogenic gene program in brown and beige adipocytes. However, whether Prdm16 is required for the development or physiological function of brown adipose tissue (BAT) in vivo has been unclear. By analyzing mice that selectively lacked Prdm16 in the brown adipose lineage, we found that Prdm16 was dispensable for embryonic BAT development. However, Prdm16 was required in young mice to suppress the expression of white-fat-selective genes in BAT through recruitment of the histone methyltransferase Ehmt1. Additionally, Prdm16 deficiency caused a severe adult-onset decline in the thermogenic character of interscapular BAT. This resulted in BAT dysfunction and cold sensitivity but did not predispose the animals to obesity. Interestingly, the loss of brown fat identity due to ablation of Prdm16 was accelerated by concurrent deletion of the closely related Prdm3 gene. Together, these results show that Prdm16 and Prdm3 control postnatal BAT identity and function.
Journal of Cell Biology | 2005
Jeff Ishibashi; Robert L. S. Perry; Atsushi Asakura; Michael A. Rudnicki
MyoD and Myf5 are basic helix-loop-helix transcription factors that play key but redundant roles in specifying myogenic progenitors during embryogenesis. However, there are functional differences between the two transcription factors that impact myoblast proliferation and differentiation. Target gene activation could be one such difference. We have used microarray and polymerase chain reaction approaches to measure the induction of muscle gene expression by MyoD and Myf5 in an in vitro model. In proliferating cells, MyoD and Myf5 function very similarly to activate the expression of likely growth phase target genes such as L-myc, m-cadherin, Mcpt8, Runx1, Spp1, Six1, IGFBP5, and Chrnβ1. MyoD, however, is strikingly more effective than Myf5 at inducing differentiation-phase target genes. This distinction between MyoD and Myf5 results from a novel and unanticipated cooperation between the MyoD NH2- and COOH-terminal regions. Together, these results support the notion that Myf5 functions toward myoblast proliferation, whereas MyoD prepares myoblasts for efficient differentiation.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Atsushi Asakura; Hiroyuki Hirai; Boris Kablar; Shigeru Morita; Jeff Ishibashi; Bryan A. Piras; Amanda J. Christ; Mayank Verma; Karin A. Vineretsky; Michael A. Rudnicki
MyoD is a myogenic master transcription factor that plays an essential role in muscle satellite cell (muscle stem cell) differentiation. To further investigate the function of MyoD in satellite cells, we examined the transplantation of satellite cell-derived myoblasts lacking the MyoD gene into regenerating skeletal muscle. After injection into injured muscle, MyoD−/− myoblasts engrafted with significantly higher efficiency compared with wild-type myoblasts. In addition, MyoD−/− myoblast-derived satellite cells were detected underneath the basal lamina of muscle fibers, indicating the self-renewal property of MyoD−/− myoblasts. To gain insights into MyoD gene deficiency in muscle stem cells, we investigated the pathways regulated by MyoD by GeneChip microarray analysis of gene expression in wild-type and MyoD−/− myoblasts. MyoD deficiency led to down-regulation of many muscle-specific genes and up-regulation of some stem cell markers. Importantly, in MyoD−/− myoblasts, many antiapoptotic genes were up-regulated, whereas genes known to execute apoptosis were down-regulated. Consistent with these gene expression profiles, MyoD−/− myoblasts were revealed to possess remarkable resistance to apoptosis and increased survival compared with wild-type myoblasts. Forced expression of MyoD or the proapoptotic protein Puma increased cell death in MyoD−/− myoblasts. Therefore, MyoD−/− myoblasts may preserve stem cell characteristics, including their resistance to apoptosis, expression of stem cell markers, and efficient engraftment and contribution to satellite cells after transplantation. Furthermore, our data offer evidence for improved therapeutic stem cell transplantation for muscular dystrophy, in which suppression of MyoD in myogenic progenitors would be beneficial to therapy by providing a selective advantage for the expansion of stem cells.
Genes & Development | 2015
Matthew Harms; Hee-Woong Lim; Yugong Ho; Suzanne N. Shapira; Jeff Ishibashi; Sona Rajakumari; David J. Steger; Mitchell A. Lazar; Kyoung-Jae Won; Patrick Seale
PR (PRD1-BF1-RIZ1 homologous) domain-containing 16 (PRDM16) drives a brown fat differentiation program, but the mechanisms by which PRDM16 activates brown fat-selective genes have been unclear. Through chromatin immunoprecipitation (ChIP) followed by deep sequencing (ChIP-seq) analyses in brown adipose tissue (BAT), we reveal that PRDM16 binding is highly enriched at a broad set of brown fat-selective genes. Importantly, we found that PRDM16 physically binds to MED1, a component of the Mediator complex, and recruits it to superenhancers at brown fat-selective genes. PRDM16 deficiency in BAT reduces MED1 binding at PRDM16 target sites and causes a fundamental change in chromatin architecture at key brown fat-selective genes. Together, these data indicate that PRDM16 controls chromatin architecture and superenhancer activity in BAT.
Cell Metabolism | 2016
Mengle Shao; Jeff Ishibashi; Christine M. Kusminski; Qiong A. Wang; Chelsea Hepler; Lavanya Vishvanath; Karen A. MacPherson; Stephen B. Spurgin; Kai Sun; William L. Holland; Patrick Seale; Rana K. Gupta
The transcriptional regulators Ebf2 and Prdm16 establish and maintain the brown and/or beige fat cell identity. However, the mechanisms operating in white adipocytes to suppress the thermogenic gene program and maintain an energy-storing phenotype are less understood. Here, we report that the transcriptional regulator Zfp423 is critical for maintaining white adipocyte identity through suppression of the thermogenic gene program. Zfp423 expression is enriched in white versus brown adipocytes and suppressed upon cold exposure. Doxycycline-inducible inactivation of Zfp423 in mature adipocytes, combined with β-adrenergic stimulation, triggers a conversion of differentiated adiponectin-expressing inguinal and gonadal adipocytes into beige-like adipocytes; this reprogramming event is sufficient to prevent and reverse diet-induced obesity and insulin resistance. Mechanistically, Zfp423 acts in adipocytes to inhibit the activity of Ebf2 and suppress Prdm16 activation. These data identify Zfp423 as a molecular brake on adipocyte thermogenesis and suggest a therapeutic strategy to unlock the thermogenic potential of white adipocytes in obesity.