Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Seale is active.

Publication


Featured researches published by Patrick Seale.


Cell | 2000

Pax7 Is Required for the Specification of Myogenic Satellite Cells

Patrick Seale; Luc A. Sabourin; Adele Girgis-Gabardo; Ahmed Mansouri; Peter Gruss; Michael A. Rudnicki

The paired box transcription factor Pax7 was isolated by representational difference analysis as a gene specifically expressed in cultured satellite cell-derived myoblasts. In situ hybridization revealed that Pax7 was also expressed in satellite cells residing in adult muscle. Cell culture and electron microscopic analysis revealed a complete absence of satellite cells in Pax7(-/-) skeletal muscle. Surprisingly, fluorescence-activated cell sorting analysis indicated that the proportion of muscle-derived stem cells was unaffected. Importantly, stem cells from Pax7(-/-) muscle displayed almost a 10-fold increase in their ability to form hematopoietic colonies. These results demonstrate that satellite cells and muscle-derived stem cells represent distinct cell populations. Together these studies suggest that induction of Pax7 in muscle-derived stem cells induces satellite cell specification by restricting alternate developmental programs.


Nature | 2008

PRDM16 controls a brown fat/skeletal muscle switch

Patrick Seale; Bryan C. Bjork; Wenli Yang; Shingo Kajimura; Sherry Chin; Shihuan Kuang; Anthony Scimè; Srikripa Devarakonda; Heather M. Conroe; Hediye Erdjument-Bromage; Paul Tempst; Michael A. Rudnicki; David R. Beier; Bruce M. Spiegelman

Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. Here we show by in vivo fate mapping that brown, but not white, fat cells arise from precursors that express Myf5, a gene previously thought to be expressed only in the myogenic lineage. We also demonstrate that the transcriptional regulator PRDM16 (PRD1-BF1-RIZ1 homologous domain containing 16) controls a bidirectional cell fate switch between skeletal myoblasts and brown fat cells. Loss of PRDM16 from brown fat precursors causes a loss of brown fat characteristics and promotes muscle differentiation. Conversely, ectopic expression of PRDM16 in myoblasts induces their differentiation into brown fat cells. PRDM16 stimulates brown adipogenesis by binding to PPAR-γ (peroxisome-proliferator-activated receptor-γ) and activating its transcriptional function. Finally, Prdm16-deficient brown fat displays an abnormal morphology, reduced thermogenic gene expression and elevated expression of muscle-specific genes. Taken together, these data indicate that PRDM16 specifies the brown fat lineage from a progenitor that expresses myoblast markers and is not involved in white adipogenesis.


Journal of Clinical Investigation | 2011

Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice.

Patrick Seale; Heather M. Conroe; Jennifer L. Estall; Shingo Kajimura; Andrea Frontini; Jeff Ishibashi; Paul Cohen; Saverio Cinti; Bruce M. Spiegelman

The white adipose organ is composed of both subcutaneous and several intra-abdominal depots. Excess abdominal adiposity is a major risk factor for metabolic disease in rodents and humans, while expansion of subcutaneous fat does not carry the same risks. Brown adipose produces heat as a defense against hypothermia and obesity, and the appearance of brown-like adipocytes within white adipose tissue depots is associated with improved metabolic phenotypes. Thus, understanding the differences in cell biology and function of these different adipose cell types and depots may be critical to the development of new therapies for metabolic disease. Here, we found that Prdm16, a brown adipose determination factor, is selectively expressed in subcutaneous white adipocytes relative to other white fat depots in mice. Transgenic expression of Prdm16 in fat tissue robustly induced the development of brown-like adipocytes in subcutaneous, but not epididymal, adipose depots. Prdm16 transgenic mice displayed increased energy expenditure, limited weight gain, and improved glucose tolerance in response to a high-fat diet. shRNA-mediated depletion of Prdm16 in isolated subcutaneous adipocytes caused a sharp decrease in the expression of thermogenic genes and a reduction in uncoupled cellular respiration. Finally, Prdm16 haploinsufficiency reduced the brown fat phenotype in white adipose tissue stimulated by β-adrenergic agonists. These results demonstrate that Prdm16 is a cell-autonomous determinant of a brown fat-like gene program and thermogenesis in subcutaneous adipose tissues.


Journal of Cell Biology | 2002

Myogenic specification of side population cells in skeletal muscle

Atsushi Asakura; Patrick Seale; Adele Girgis-Gabardo; Michael A. Rudnicki

Skeletal muscle contains myogenic progenitors called satellite cells and muscle-derived stem cells that have been suggested to be pluripotent. We further investigated the differentiation potential of muscle-derived stem cells and satellite cells to elucidate relationships between these two populations of cells. FACS® analysis of muscle side population (SP) cells, a fraction of muscle-derived stem cells, revealed expression of hematopoietic stem cell marker Sca-1 but did not reveal expression of any satellite cell markers. Muscle SP cells were greatly enriched for cells competent to form hematopoietic colonies. Moreover, muscle SP cells with hematopoietic potential were CD45 positive. However, muscle SP cells did not differentiate into myocytes in vitro. By contrast, satellite cells gave rise to myocytes but did not express Sca-1 or CD45 and never formed hematopoietic colonies. Importantly, muscle SP cells exhibited the potential to give rise to both myocytes and satellite cells after intramuscular transplantation. In addition, muscle SP cells underwent myogenic specification after co-culture with myoblasts. Co-culture with myoblasts or forced expression of MyoD also induced muscle differentiation of muscle SP cells prepared from mice lacking Pax7 gene, an essential gene for satellite cell development. Therefore, these data document that satellite cells and muscle-derived stem cells represent distinct populations and demonstrate that muscle-derived stem cells have the potential to give rise to myogenic cells via a myocyte-mediated inductive interaction.


Cell | 2003

Wnt Signaling Induces the Myogenic Specification of Resident CD45+ Adult Stem Cells during Muscle Regeneration

Anna Polesskaya; Patrick Seale; Michael A. Rudnicki

The observation that CD45(+) stem cells injected into the circulation participate in muscle regeneration raised the question of whether CD45(+) stem cells resident in muscle play a physiological role during regeneration. We found that CD45(+) cells cultured from uninjured muscle were uniformly nonmyogenic. However, CD45(+) cells purified from regenerating muscle readily gave rise to determined myoblasts. The number of CD45(+) cells in muscle rapidly expanded following injury, and a high proportion entered the cell cycle. Investigation of candidate pathways involved in embryonic myogenesis revealed that Wnt signaling was sufficient to induce the myogenic specification of muscle-derived CD45(+) stem cells. Moreover, injection of the Wnt antagonists sFRP2/3 into regenerating muscle markedly reduced CD45(+) stem cell proliferation and myogenic specification. Our data therefore suggest that mobilization of resident CD45(+) stem cells is an important factor in regeneration after injury and highlight the Wnt pathway as a potential therapeutic target for degenerative neuromuscular disease.


Nature | 2009

Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex.

Shingo Kajimura; Patrick Seale; Kazuishi Kubota; Elaine P. Lunsford; John V. Frangioni; Steven P. Gygi; Bruce M. Spiegelman

Brown adipose cells are specialized to dissipate chemical energy in the form of heat, as a physiological defence against cold and obesity. PRDM16 (PR domain containing 16) is a 140 kDa zinc finger protein that robustly induces brown fat determination and differentiation. Recent data suggests that brown fat cells arise in vivo from a Myf5-positive, myoblastic lineage by the action of PRDM16 (ref. 3); however, the molecular mechanisms responsible for this developmental switch is unclear. Here we show that PRDM16 forms a transcriptional complex with the active form of C/EBP-β (also known as LAP), acting as a critical molecular unit that controls the cell fate switch from myoblastic precursors to brown fat cells. Forced expression of PRDM16 and C/EBP-β is sufficient to induce a fully functional brown fat program in naive fibroblastic cells, including skin fibroblasts from mouse and man. Transplantation of fibroblasts expressing these two factors into mice gives rise to an ectopic fat pad with the morphological and biochemical characteristics of brown fat. Like endogenous brown fat, this synthetic brown fat tissue acts as a sink for glucose uptake, as determined by positron emission tomography with fluorodeoxyglucose. These data indicate that the PRDM16–C/EBP-β complex initiates brown fat formation from myoblastic precursors, and may provide opportunities for the development of new therapeutics for obesity and type-2 diabetes.


FEBS Letters | 2002

The post-natal heart contains a myocardial stem cell population.

Andrée M. Hierlihy; Patrick Seale; Corrinne G. Lobe; Michael A. Rudnicki; Lynn A. Megeney

The recent identification of stem cell pools in a variety of unexpected tissue sources has raised the possibility that a pluripotent stem cell population may reside in the myocardium and contribute to the post‐natal growth of this tissue. Here, we demonstrate that the post‐natal myocardium contains a resident verapamil‐sensitive side population (SP), with stem cell‐like activity. When growth of the post‐natal heart was attenuated through over‐expression of a dominant negative cardiac transcription factor (MEF2C), the resident SP cell population was subject to activation, followed by a consequent depletion. In addition, cardiac SP cells are capable of fusion with other cell types, but do not adopt the corresponding gene expression profile. These observations suggest that a responsive stem cell pool resides in the adult myocardium, and may influence adaptation of the post‐natal heart.


Journal of Cell Biology | 2006

Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis

Shihuan Kuang; Sophie B. P. Chargé; Patrick Seale; Michael Huh; Michael A. Rudnicki

We assessed viable Pax7 − / − mice in 129Sv/J background and observed reduced growth and marked muscle wasting together with a complete absence of functional satellite cells. Acute injury resulted in an extreme deficit in muscle regeneration. However, a small number of regenerated myofibers were detected, suggesting the presence of residual myogenic cells in Pax7-deficient muscle. Rare Pax3+/MyoD+ myoblasts were recovered from Pax7 − / − muscle homogenates and cultures of myofiber bundles but not from single myofibers free of interstitial tissues. Finally, we identified Pax3+ cells in the muscle interstitial environment and demonstrated that they coexpressed MyoD during regeneration. Sublaminar satellite cells in hind limb muscle did not express detectable levels of Pax3 protein or messenger RNA. Therefore, we conclude that interstitial Pax3+ cells represent a novel myogenic population that is distinct from the sublaminar satellite cell lineage and that Pax7 is essential for the formation of functional myogenic progenitors from sublaminar satellite cells.


Nature | 2015

Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity

Jonathan R. Brestoff; Brian S. Kim; Steven A. Saenz; Rachel R. Stine; Laurel A. Monticelli; Gregory F. Sonnenberg; Joseph Thome; Donna L. Farber; Kabirullah Lutfy; Patrick Seale; David Artis

Obesity is an increasingly prevalent disease regulated by genetic and environmental factors. Emerging studies indicate that immune cells, including monocytes, granulocytes and lymphocytes, regulate metabolic homeostasis and are dysregulated in obesity. Group 2 innate lymphoid cells (ILC2s) can regulate adaptive immunity and eosinophil and alternatively activated macrophage responses, and were recently identified in murine white adipose tissue (WAT) where they may act to limit the development of obesity. However, ILC2s have not been identified in human adipose tissue, and the mechanisms by which ILC2s regulate metabolic homeostasis remain unknown. Here we identify ILC2s in human WAT and demonstrate that decreased ILC2 responses in WAT are a conserved characteristic of obesity in humans and mice. Interleukin (IL)-33 was found to be critical for the maintenance of ILC2s in WAT and in limiting adiposity in mice by increasing caloric expenditure. This was associated with recruitment of uncoupling protein 1 (UCP1)+ beige adipocytes in WAT, a process known as beiging or browning that regulates caloric expenditure. IL-33-induced beiging was dependent on ILC2s, and IL-33 treatment or transfer of IL-33-elicited ILC2s was sufficient to drive beiging independently of the adaptive immune system, eosinophils or IL-4 receptor signalling. We found that ILC2s produce methionine-enkephalin peptides that can act directly on adipocytes to upregulate Ucp1 expression in vitro and that promote beiging in vivo. Collectively, these studies indicate that, in addition to responding to infection or tissue damage, ILC2s can regulate adipose function and metabolic homeostasis in part via production of enkephalin peptides that elicit beiging.


Genes & Development | 2008

Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex

Shingo Kajimura; Patrick Seale; Takuya Tomaru; Hediye Erdjument-Bromage; Marcus P. Cooper; Jorge L. Ruas; Sherry Chin; Paul Tempst; Mitchell A. Lazar; Bruce M. Spiegelman

Brown fat is a specialized tissue that can dissipate energy and counteract obesity through a pattern of gene expression that greatly increases mitochondrial content and uncoupled respiration. PRDM16 is a zinc-finger protein that controls brown fat determination by stimulating brown fat-selective gene expression, while suppressing the expression of genes selective for white fat cells. To determine the mechanisms regulating this switching of gene programs, we purified native PRDM16 protein complexes from fat cells. We show here that the PRDM16 transcriptional holocompex contains C-terminal-binding protein-1 (CtBP-1) and CtBP-2, and this direct interaction selectively mediates the repression of white fat genes. This repression occurs through recruiting a PRDM16/CtBP complex onto the promoters of white fat-specific genes such as resistin, and is abolished in the genetic absence of CtBP-1 and CtBP-2. In turn, recruitment of PPAR-gamma-coactivator-1alpha (PGC-1alpha) and PGC-1beta to the PRDM16 complex displaces CtBP, allowing this complex to powerfully activate brown fat genes, such as PGC-1alpha itself. These data show that the regulated docking of the CtBP proteins on PRDM16 controls the brown and white fat-selective gene programs.

Collaboration


Dive into the Patrick Seale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeff Ishibashi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kyoung-Jae Won

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Matthew Harms

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hee-Woong Lim

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Sona Rajakumari

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Mitchell A. Lazar

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Anna Polesskaya

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge