Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heerajnarain Bulluck is active.

Publication


Featured researches published by Heerajnarain Bulluck.


Circulation | 2015

Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis

Marianna Fontana; Silvia Pica; Patricia Reant; Amna Abdel-Gadir; Thomas A. Treibel; Sanjay M. Banypersad; Viviana Maestrini; William Barcella; Stefania Rosmini; Heerajnarain Bulluck; Rabya Sayed; Ketna Patel; Shameem Mamhood; Chiara Bucciarelli-Ducci; Carol J. Whelan; Anna S Herrey; Helen J. Lachmann; Ashutosh D. Wechalekar; Charlotte Manisty; Eric B. Schelbert; Peter Kellman; Julian D. Gillmore; Philip N. Hawkins; James C. Moon

Background— The prognosis and treatment of the 2 main types of cardiac amyloidosis, immunoglobulin light chain (AL) and transthyretin (ATTR) amyloidosis, are substantially influenced by cardiac involvement. Cardiovascular magnetic resonance with late gadolinium enhancement (LGE) is a reference standard for the diagnosis of cardiac amyloidosis, but its potential for stratifying risk is unknown. Methods and Results— Two hundred fifty prospectively recruited subjects, 122 patients with ATTR amyloid, 9 asymptomatic mutation carriers, and 119 patients with AL amyloidosis, underwent LGE cardiovascular magnetic resonance. Subjects were followed up for a mean of 24±13 months. LGE was performed with phase-sensitive inversion recovery (PSIR) and without (magnitude only). These were compared with extracellular volume measured with T1 mapping. PSIR was superior to magnitude-only inversion recovery LGE because PSIR always nulled the tissue (blood or myocardium) with the longest T1 (least gadolinium). LGE was classified into 3 patterns: none, subendocardial, and transmural, which were associated with increasing amyloid burden as defined by extracellular volume (P<0.0001), with transitions from none to subendocardial LGE at an extracellular volume of 0.40 to 0.43 (AL) and 0.39 to 0.40 (ATTR) and to transmural at 0.48 to 0.55 (AL) and 0.47 to 0.59 (ATTR). Sixty-seven patients (27%) died. Transmural LGE predicted death (hazard ratio, 5.4; 95% confidence interval, 2.1–13.7; P<0.0001) and remained independent after adjustment for N-terminal pro-brain natriuretic peptide, ejection fraction, stroke volume index, E/E′, and left ventricular mass index (hazard ratio, 4.1; 95% confidence interval, 1.3–13.1; P<0.05). Conclusions— There is a continuum of cardiac involvement in systemic AL and ATTR amyloidosis. Transmural LGE is determined reliably by PSIR and represents advanced cardiac amyloidosis. The PSIR technique provides incremental information on outcome even after adjustment for known prognostic factors.


Heart | 2016

Reducing myocardial infarct size: challenges and future opportunities

Heerajnarain Bulluck; Derek M. Yellon; Derek J. Hausenloy

Despite prompt reperfusion by primary percutaneous coronary intervention (PPCI), the mortality and morbidity of patients presenting with an acute ST-segment elevation myocardial infarction (STEMI) remain significant with 9% death and 10% heart failure at 1 year. In these patients, one important neglected therapeutic target is ‘myocardial reperfusion injury’, a term given to the cardiomyocyte death and microvascular dysfunction which occurs on reperfusing ischaemic myocardium. A number of cardioprotective therapies (both mechanical and pharmacological), which are known to target myocardial reperfusion injury, have been shown to reduce myocardial infarct (MI) size in small proof-of-concept clinical studies—however, being able to demonstrate improved clinical outcomes has been elusive. In this article, we review the challenges facing clinical cardioprotection research, and highlight future therapies for reducing MI size and preventing heart failure in patients presenting with STEMI at risk of myocardial reperfusion injury.


Jacc-cardiovascular Imaging | 2016

Automatic Measurement of the Myocardial Interstitium: Synthetic Extracellular Volume Quantification Without Hematocrit Sampling.

Thomas A. Treibel; Marianna Fontana; Viviana Maestrini; Silvia Castelletti; Stefania Rosmini; Joanne Simpson; Arthur Nasis; Anish N. Bhuva; Heerajnarain Bulluck; Amna Abdel-Gadir; Steven K. White; Charlotte Manisty; Bruce S Spottiswoode; Timothy C. Wong; Stefan K Piechnik; Peter Kellman; Matthew D. Robson; Erik B. Schelbert; James C. Moon

OBJECTIVES The authors sought to generate a synthetic extracellular volume fraction (ECV) from the relationship between hematocrit and longitudinal relaxation rate of blood. BACKGROUND ECV quantification by cardiac magnetic resonance (CMR) measures diagnostically and prognostically relevant changes in the extracellular space. Current methodologies require blood hematocrit (Hct) measurement-a complication to easy clinical application. We hypothesized that the relationship between Hct and longitudinal relaxation rate of blood (R1 = 1/T1blood) could be calibrated and used to generate a synthetic ECV without Hct that was valid, user-friendly, and prognostic. METHODS Proof-of-concept: 427 subjects with a wide range of health and disease were divided into derivation (n = 214) and validation (n = 213) cohorts. Histology cohort: 18 patients with severe aortic stenosis with histology obtained during valve replacement. Outcome cohort: For comparison with external outcome data, we applied synthetic ECV to 1,172 consecutive patients (median follow-up 1.7 years; 74 deaths). All underwent CMR scanning at 1.5-T with ECV calculation from pre- and post-contrast T1 (blood and myocardium) and venous Hct. RESULTS Proof-of-concept: In the derivation cohort, native R1blood and Hct showed a linear relationship (R(2) = 0.51; p < 0.001), which was used to create synthetic Hct and ECV. Synthetic ECV correlated well with conventional ECV (R(2) = 0.97; p < 0.001) without bias. These results were maintained in the validation cohort. Histology cohort: Synthetic and conventional ECV both correlated well with collagen volume fraction measured from histology (R(2) = 0.61 and 0.69, both p < 0.001) with no statistical difference (p = 0.70). Outcome cohort: Synthetic ECV related to all-cause mortality (hazard ratio 1.90; 95% confidence interval 1.55 to 2.31; for every 5% increase in ECV). Finally, we engineered a synthetic ECV tool, generating automatic ECV maps during image acquisition. CONCLUSIONS Synthetic ECV provides validated noninvasive quantification of the myocardial extracellular space without blood sampling and is associated with cardiovascular outcomes.


Journal of the American College of Cardiology | 2015

Remote Ischemic Conditioning Reduces Myocardial Infarct Size in STEMI Patients Treated by Thrombolysis.

Derek M. Yellon; Akbar K. Ackbarkhan; Vinod Balgobin; Heerajnarain Bulluck; Anil Deelchand; Mohammad R. Dhuny; Nizam Domah; Dhunujnaye Gaoneadry; Rabindranath K. Jagessur; Noorjehan Joonas; Sudhir Kowlessur; Jairajsing Lutchoo; Jennifer M. Nicholas; Keyvoobalan Pauvaday; Oomesh Shamloll; John M. Walker; Derek J. Hausenloy

In many developing nations, where primary percutaneous coronary intervention (PPCI) is not widely available, ST-segment elevation myocardial infarction (STEMI) patients are still treated by thrombolysis [(1)][1]. However, because thrombolytic therapy is less effective than PPCI at restoring blood


Circulation | 2015

Myocardial T1 Mapping - Hope or Hype? -

Heerajnarain Bulluck; Viviana Maestrini; Stefania Rosmini; Amna Abdel-Gadir; Thomas A. Treibel; Silvia Castelletti; Chiara Bucciarelli-Ducci; Charlotte Manisty; James C. Moon

Cardiovascular magnetic resonance is a well-established tool for the quantification of focal fibrosis. With the introduction of T1 mapping, diffuse myocardial processes can be detected and quantified. In particular, infiltration and storage disorders with large disease-related changes, and diffuse fibrosis where measurement is harder but the potential impact larger. This has added a new dimension to the understanding and assessment of various myocardial diseases. T1 mapping promises to detect early disease, quantify disease severity and provide prognostic insights into certain conditions. It also has the potential to be a robust surrogate marker in drug development trials to monitor therapeutic response and be a prognostic marker in certain diseases. T1 mapping is an evolving field and numerous factors currently preclude its standardization. In this review, we describe the current status of T1 mapping and its potential promises and pitfalls.


Circulation-cardiovascular Imaging | 2016

Residual Myocardial Iron Following Intramyocardial Hemorrhage During the Convalescent Phase of Reperfused ST-Segment–Elevation Myocardial Infarction and Adverse Left Ventricular Remodeling

Heerajnarain Bulluck; Stefania Rosmini; Amna Abdel-Gadir; Steven K White; Anish N Bhuva; Thomas A. Treibel; Marianna Fontana; Manish Ramlall; Ashraf Hamarneh; Alex Sirker; Anna S Herrey; Charlotte Manisty; Derek M. Yellon; Peter Kellman; James C. Moon; Derek J. Hausenloy

Background—The presence of intramyocardial hemorrhage (IMH) in ST-segment–elevation myocardial infarction patients reperfused by primary percutaneous coronary intervention has been associated with residual myocardial iron at follow-up, and its impact on adverse left ventricular (LV) remodeling is incompletely understood and is investigated here. Methods and Results—Forty-eight ST-segment–elevation myocardial infarction patients underwent cardiovascular magnetic resonance at 4±2 days post primary percutaneous coronary intervention, of whom 40 had a follow-up scan at 5±2 months. Native T1, T2, and T2* maps were acquired. Eight out of 40 (20%) patients developed adverse LV remodeling. A subset of 28 patients had matching T2* maps, of which 15/28 patients (54%) had IMH. Eighteen of 28 (64%) patients had microvascular obstruction on the acute scan, of whom 15/18 (83%) patients had microvascular obstruction with IMH. On the follow-up scan, 13/15 patients (87%) had evidence of residual iron within the infarct zone. Patients with residual iron had higher T2 in the infarct zone surrounding the residual iron when compared with those without. In patients with adverse LV remodeling, T2 in the infarct zone surrounding the residual iron was also higher than in those without (60 [54–64] ms versus 53 [51–56] ms; P=0.025). Acute myocardial infarct size, extent of microvascular obstruction, and IMH correlated with the change in LV end-diastolic volume (Pearson’s rho of 0.64, 0.59, and 0.66, respectively; P=0.18 and 0.62, respectively, for correlation coefficient comparison) and performed equally well on receiver operating characteristic curve for predicting adverse LV remodeling (area under the curve: 0.99, 0.94, and 0.95, respectively; P=0.19 for receiver operating characteristic curve comparison). Conclusions—The majority of ST-segment–elevation myocardial infarction patients with IMH had residual myocardial iron at follow-up. This was associated with persistently elevated T2 values in the surrounding infarct tissue and adverse LV remodeling. IMH and residual myocardial iron may be potential therapeutic targets for preventing adverse LV remodeling in reperfused ST-segment–elevation myocardial infarction patients.


Circulation-cardiovascular Imaging | 2016

Quantifying the Area at Risk in Reperfused ST-Segment–Elevation Myocardial Infarction Patients Using Hybrid Cardiac Positron Emission Tomography–Magnetic Resonance Imaging

Heerajnarain Bulluck; Steven K White; Georg M. Fröhlich; Steven G. Casson; Celia O’Meara; Ayla Newton; Jennifer M. Nicholas; Peter Weale; Simon Wan; Alex Sirker; James C. Moon; Derek M. Yellon; Ashley M. Groves; Leon Menezes; Derek J. Hausenloy

Background—Hybrid positron emission tomography and magnetic resonance allows the advantages of magnetic resonance in tissue characterizing the myocardium to be combined with the unique metabolic insights of positron emission tomography. We hypothesized that the area of reduced myocardial glucose uptake would closely match the area at risk delineated by T2 mapping in ST-segment–elevation myocardial infarction patients. Methods and Results—Hybrid positron emission tomography and magnetic resonance using 18F-fluorodeoxyglucose (FDG) for glucose uptake was performed in 21 ST-segment–elevation myocardial infarction patients at a median of 5 days. Follow-up scans were performed in a subset of patients 12 months later. The area of reduced FDG uptake was significantly larger than the infarct size quantified by late gadolinium enhancement (37.2±11.6% versus 22.3±11.7%; P<0.001) and closely matched the area at risk by T2 mapping (37.2±11.6% versus 36.3±12.2%; P=0.10, R=0.98, bias 0.9±4.4%). On the follow-up scans, the area of reduced FDG uptake was significantly smaller in size when compared with the acute scans (19.5 [6.3%–31.8%] versus 44.0 [21.3%–55.3%]; P=0.002) and closely correlated with the areas of late gadolinium enhancement (R 0.98) with a small bias of 2.0±5.6%. An FDG uptake of ≥45% on the acute scans could predict viable myocardium on the follow-up scan. Both transmural extent of late gadolinium enhancement and FDG uptake on the acute scan performed equally well to predict segmental wall motion recovery. Conclusions—Hybrid positron emission tomography and magnetic resonance in the reperfused ST-segment–elevation myocardial infarction patients showed reduced myocardial glucose uptake within the area at risk and closely matched the area at risk delineated by T2 mapping. FDG uptake, as well as transmural extent of late gadolinium enhancement, acutely can identify viable myocardial segments.Background Hybrid Positron Emission Tomography and Magnetic Resonance (PET-MR) allows the advantages of MR in tissue characterizing the myocardium to be combined with the unique metabolic insights of PET. We hypothesized that the area of reduced myocardial glucose uptake would closely match the area-at-risk (AAR) delineated by T2-mapping in ST-segment elevation myocardial infarction (STEMI) patients.


International Journal of Cardiology | 2016

Clinical benefit of adenosine as an adjunct to reperfusion in ST-elevation myocardial infarction patients: An updated meta-analysis of randomized controlled trials.

Heerajnarain Bulluck; Alex Sirker; Yoon K. Loke; David Garcia-Dorado; Derek J. Hausenloy

Background Adenosine administered as an adjunct to reperfusion can reduce coronary no-reflow and limit myocardial infarct (MI) size in ST-segment elevation myocardial infarction (STEMI) patients. Whether adjunctive adenosine therapy can improve clinical outcomes in reperfused STEMI patients is not clear and is investigated in this meta-analysis of 13 randomized controlled trials (RCTs). Methods We performed an up-to-date search for all RCTs investigating adenosine as an adjunct to reperfusion in STEMI patients. We calculated pooled relative risks using a fixed-effect meta-analysis assessing the impact of adjunctive adenosine therapy on major clinical endpoint including all-cause mortality, non-fatal myocardial infarction, and heart failure. Surrogate markers of reperfusion were also analyzed. Results 13 RCTs (4273 STEMI patients) were identified and divided into 2 subgroups: intracoronary adenosine versus control (8 RCTs) and intravenous adenosine versus control (5 RCTs). In patients administered intracoronary adenosine, the incidence of heart failure was significantly lower (risk ratio [RR] 0.44 [95% CI 0.25–0.78], P = 0.005) and the incidence of coronary no-reflow was reduced (RR for TIMI flow<3 postreperfusion 0.68 [95% CI 0.47–0.99], P = 0.04). There was no difference in heart failure incidence in the intravenous adenosine group but most RCTs in this subgroup were from the thrombolysis era. There was no difference in non-fatal MI or all-cause mortality in both subgroups. Conclusion We find evidence of improved clinical outcome in terms of less heart failure in STEMI patients administered intracoronary adenosine as an adjunct to reperfusion. This finding will need to be confirmed in a large adequately powered prospective RCT.


Basic Research in Cardiology | 2016

From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on "New frontiers in cardiovascular research"

Hector A. Cabrera-Fuentes; Julián Aragonés; Jürgen Bernhagen; Andreas Boening; William A. Boisvert; Hans Erik Bøtker; Heerajnarain Bulluck; Stuart A. Cook; Fabio Di Lisa; Felix B. Engel; Bernd Engelmann; Fulvia Ferrazzi; Péter Ferdinandy; Alan Fong; Ingrid Fleming; Erich Gnaiger; Sauri Hernández-Reséndiz; Siavash Beikoghli Kalkhoran; Moo Hyun Kim; Sandrine Lecour; Elisa A. Liehn; Michael Marber; Manuel Mayr; Tetsuji Miura; Sang-Bing Ong; Karlheinz Peter; Daniel Sedding; Manvendra K. Singh; M.Saadeh Suleiman; Hans Schnittler

In this meeting report, particularly addressing the topic of protection of the cardiovascular system from ischemia/reperfusion injury, highlights are presented that relate to conditioning strategies of the heart with respect to molecular mechanisms and outcome in patients’ cohorts, the influence of co-morbidities and medications, as well as the contribution of innate immune reactions in cardioprotection. Moreover, developmental or systems biology approaches bear great potential in systematically uncovering unexpected components involved in ischemia–reperfusion injury or heart regeneration. Based on the characterization of particular platelet integrins, mitochondrial redox-linked proteins, or lipid-diol compounds in cardiovascular diseases, their targeting by newly developed theranostics and technologies opens new avenues for diagnosis and therapy of myocardial infarction to improve the patients’ outcome.


Journal of the American Heart Association | 2016

Automated Extracellular Volume Fraction Mapping Provides Insights Into the Pathophysiology of Left Ventricular Remodeling Post–Reperfused ST‐Elevation Myocardial Infarction

Heerajnarain Bulluck; Stefania Rosmini; Amna Abdel-Gadir; Steven K White; Anish N. Bhuva; Thomas A. Treibel; Marianna Fontana; Esther Gonzalez-Lopez; Patricia Reant; Manish Ramlall; Ashraf Hamarneh; Alex Sirker; Anna S. Herrey; Charlotte Manisty; Derek M. Yellon; Peter Kellman; James C. Moon; Derek J. Hausenloy

Background Whether the remote myocardium of reperfused ST‐segment elevation myocardial infarction (STEMI) patients plays a part in adverse left ventricular (LV) remodeling remains unclear. We aimed to use automated extracellular volume fraction (ECV) mapping to investigate whether changes in the ECV of the remote (ECVR emote) and infarcted myocardium (ECVI nfarct) impacted LV remodeling. Methods and Results Forty‐eight of 50 prospectively recruited reperfused STEMI patients completed a cardiovascular magnetic resonance at 4±2 days and 40 had a follow‐up scan at 5±2 months. Twenty healthy volunteers served as controls. Mean segmental values for native T1, T2, and ECV were obtained. Adverse LV remodeling was defined as ≥20% increase in LV end‐diastolic volume. ECVR emote was higher on the acute scan when compared to control (27.9±2.1% vs 26.4±2.1%; P=0.01). Eight patients developed adverse LV remodeling and had higher ECVR emote acutely (29.5±1.4% vs 27.4±2.0%; P=0.01) and remained higher at follow‐up (28.6±1.5% vs 26.6±2.1%; P=0.02) compared to those without. Patients with a higher ECVR emote and a lower myocardial salvage index (MSI) acutely were significantly associated with adverse LV remodeling, independent of T1Remote, T1Core and microvascular obstruction, whereas a higher ECVI nfarct was significantly associated with worse wall motion recovery. Conclusions ECVR emote was increased acutely in reperfused STEMI patients. Those with adverse LV remodeling had higher ECVR emote acutely, and this remained higher at follow‐up than those without adverse LV remodeling. A higher ECVR emote and a lower MSI acutely were significantly associated with adverse LV remodeling whereas segments with higher ECVI nfarct were less likely to recover wall motion.

Collaboration


Dive into the Heerajnarain Bulluck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James C. Moon

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amna Abdel-Gadir

University College Hospital

View shared research outputs
Top Co-Authors

Avatar

Marianna Fontana

University College Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Kellman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Steven K White

University College London

View shared research outputs
Top Co-Authors

Avatar

Anna S Herrey

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge