Heike Hofmann-Winkler
German Primate Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heike Hofmann-Winkler.
Journal of Virology | 2013
Stephanie Bertram; Ronald Dijkman; Matthias Habjan; Adeline Heurich; Stefanie Gierer; Ilona Glowacka; Kathrin Welsch; Michael Winkler; Heike Schneider; Heike Hofmann-Winkler; Volker Thiel; Stefan Pöhlmann
ABSTRACT Infection with human coronavirus 229E (HCoV-229E) is associated with the common cold and may result in pneumonia in immunocompromised patients. The viral spike (S) protein is incorporated into the viral envelope and mediates infectious entry of HCoV-229E into host cells, a process that depends on the activation of the S-protein by host cell proteases. However, the proteases responsible for HCoV-229E activation are incompletely defined. Here we show that the type II transmembrane serine proteases TMPRSS2 and HAT cleave the HCoV-229E S-protein (229E-S) and augment 229E-S-driven cell-cell fusion, suggesting that TMPRSS2 and HAT can activate 229E-S. Indeed, engineered expression of TMPRSS2 and HAT rendered 229E-S-driven virus-cell fusion insensitive to an inhibitor of cathepsin L, a protease previously shown to facilitate HCoV-229E infection. Inhibition of endogenous cathepsin L or TMPRSS2 demonstrated that both proteases can activate 229E-S for entry into cells that are naturally susceptible to infection. In addition, evidence was obtained that activation by TMPRSS2 rescues 229E-S-dependent cell entry from inhibition by IFITM proteins. Finally, immunohistochemistry revealed that TMPRSS2 is coexpressed with CD13, the HCoV-229E receptor, in human airway epithelial (HAE) cells, and that CD13+ TMPRSS2+ cells are preferentially targeted by HCoV-229E, suggesting that TMPRSS2 can activate HCoV-229E in infected humans. In sum, our results indicate that HCoV-229E can employ redundant proteolytic pathways to ensure its activation in host cells. In addition, our observations and previous work suggest that diverse human respiratory viruses are activated by TMPRSS2, which may constitute a target for antiviral intervention.
Emerging Infectious Diseases | 2013
Stefanie Gierer; Heike Hofmann-Winkler; Waleed H. Albuali; Stephanie Bertram; Abdullah M. Al-Rubaish; Abdullah A Yousef; Awatif N. Al-Nafaie; Amein K. Al-Ali; Obeid E. Obeid; Khaled R. Alkharsah; Stefan Pöhlmann
We used a lentiviral vector bearing the viral spike protein to detect neutralizing antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV) in persons from the Eastern Province of Saudi Arabia. None of the 268 samples tested displayed neutralizing activity, which suggests that MERS-CoV infections in humans are infrequent in this province.
Journal of Virology | 2009
Anja Berndt; Heike Hofmann-Winkler; Nina Tavalai; Gabriele Hahn; Thomas Stamminger
ABSTRACT The major transactivator protein IE2p86 of human cytomegalovirus (HCMV) has previously been shown to undergo posttranslational modification by the covalent attachment of SUMO proteins, termed SUMOylation, which occurs at two lysine residues located at amino acid positions 175 and 180. Mutation of the acceptor lysines resulted in the abrogation of IE2p86 SUMOylation in mammalian cells and a strong reduction of IE2p86-mediated transactivation. In this paper, we identify an additional SUMO interaction motif (SIM) within IE2p86, which mediates noncovalent binding to SUMO, as shown by yeast two-hybrid analyses. Transient-expression experiments revealed that an IE2p86 SIM mutant exhibited significantly reduced SUMOylation, strongly suggesting that noncovalent SUMO interactions affect the efficacy of covalent SUMO coupling. In order to define the relevance of IE2p86 SUMO interactions for viral replication, recombinant viruses originating from two different HCMV strains (AD169 and VR1814) were generated. Analysis of viruses expressing SUMOylation-negative IE2p86 revealed strongly impaired replication due to reduced viral DNA and protein accumulation, as well as diminished initiation of immediate-early gene expression. The additional introduction of the SIM mutation into the viral genome did not further compromise viral replication but resulted in altered expression of viral proteins at late times postinfection. In summary, this paper clearly shows that IE2p86 SUMOylation is necessary for efficient replication of the HCMV laboratory strain AD169 and the clinical isolate VR1814 and thus for the in vivo function of this viral transcription factor.
Viruses | 2012
Heike Hofmann-Winkler; Franziska Kaup; Stefan Pöhlmann
Filoviruses cause severe hemorrhagic fever in humans with high case-fatality rates. The cellular factors exploited by filoviruses for their spread constitute potential targets for intervention, but are incompletely defined. The viral glycoprotein (GP) mediates filovirus entry into host cells. Recent studies revealed important insights into the host cell molecules engaged by GP for cellular entry. The binding of GP to cellular lectins was found to concentrate virions onto susceptible cells and might contribute to the early and sustained infection of macrophages and dendritic cells, important viral targets. Tyrosine kinase receptors were shown to promote macropinocytic uptake of filoviruses into a subset of susceptible cells without binding to GP, while interactions between GP and human T cell Ig mucin 1 (TIM-1) might contribute to filovirus infection of mucosal epithelial cells. Moreover, GP engagement of the cholesterol transporter Niemann-Pick C1 was demonstrated to be essential for GP-mediated fusion of the viral envelope with a host cell membrane. Finally, mutagenic and structural analyses defined GP domains which interact with these host cell factors. Here, we will review the recent progress in elucidating the molecular interactions underlying filovirus entry and discuss their implications for our understanding of the viral cell tropism.
The Journal of Infectious Diseases | 2015
Franziska Dahlmann; Nadine Biedenkopf; Anne Babler; Willi Jahnen-Dechent; Christina B. Karsten; Kerstin Gnirß; Heike Schneider; Florian Wrensch; Christopher A. O'Callaghan; Stephanie Bertram; Georg Herrler; Stephan Becker; Stefan Pöhlmann; Heike Hofmann-Winkler
Abstract Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)–driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells.
Journal of Virology | 2014
Adeline Heurich; Heike Hofmann-Winkler; Stefanie Gierer; Thomas Liepold; Olaf Jahn; Stefan Pöhlmann
ABSTRACT The type II transmembrane serine proteases TMPRSS2 and HAT can cleave and activate the spike protein (S) of the severe acute respiratory syndrome coronavirus (SARS-CoV) for membrane fusion. In addition, these proteases cleave the viral receptor, the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), and it was proposed that ACE2 cleavage augments viral infectivity. However, no mechanistic insights into this process were obtained and the relevance of ACE2 cleavage for SARS-CoV S protein (SARS-S) activation has not been determined. Here, we show that arginine and lysine residues within ACE2 amino acids 697 to 716 are essential for cleavage by TMPRSS2 and HAT and that ACE2 processing is required for augmentation of SARS-S-driven entry by these proteases. In contrast, ACE2 cleavage was dispensable for activation of the viral S protein. Expression of TMPRSS2 increased cellular uptake of soluble SARS-S, suggesting that protease-dependent augmentation of viral entry might be due to increased uptake of virions into target cells. Finally, TMPRSS2 was found to compete with the metalloprotease ADAM17 for ACE2 processing, but only cleavage by TMPRSS2 resulted in augmented SARS-S-driven entry. Collectively, our results in conjunction with those of previous studies indicate that TMPRSS2 and potentially related proteases promote SARS-CoV entry by two separate mechanisms: ACE2 cleavage, which might promote viral uptake, and SARS-S cleavage, which activates the S protein for membrane fusion. These observations have interesting implications for the development of novel therapeutics. In addition, they should spur efforts to determine whether receptor cleavage promotes entry of other coronaviruses, which use peptidases as entry receptors.
Journal of Virology | 2015
Kerstin Gnirß; Pawel Zmora; Paulina Blazejewska; Michael Winkler; Anika Lins; Inga Nehlmeier; Sabine Gärtner; Anna-Sophie Moldenhauer; Heike Hofmann-Winkler; Thorsten Wolff; Michael Schindler; Stefan Pöhlmann
ABSTRACT The expression of the antiviral host cell factor tetherin is induced by interferon and can inhibit the release of enveloped viruses from infected cells. The Vpu protein of HIV-1 antagonizes the antiviral activity of tetherin, and tetherin antagonists with Vpu-like activity have been identified in other viruses. In contrast, it is incompletely understood whether tetherin inhibits influenza A virus (FLUAV) release and whether FLUAV encodes tetherin antagonists. Here, we show that release of several laboratory-adapted FLUAV strains and a seasonal FLUAV strain is inhibited by tetherin, while pandemic FLUAV A/Hamburg/4/2009 is resistant. Studies with a virus-like particle system and analysis of reassortant viruses provided evidence that the viral hemagglutinin (HA) is an important determinant of tetherin antagonism but requires the presence of its cognate neuraminidase (NA) to inhibit tetherin. Finally, tetherin antagonism by FLUAV was dependent on the virion context, since retrovirus release from tetherin-positive cells was not rescued, and correlated with an HA- and NA-dependent reduction in tetherin expression. In sum, our study identifies HA and NA proteins of certain pandemic FLUAV as tetherin antagonists, which has important implications for understanding FLUAV pathogenesis. IMPORTANCE Influenza A virus (FLUAV) infection is responsible for substantial global morbidity and mortality, and understanding how the virus evades the immune defenses of the host may uncover novel targets for antiviral intervention. Tetherin is an antiviral effector molecule of the innate immune system which can contribute to control of viral invasion. However, it has been unclear whether FLUAV is inhibited by tetherin and whether these viruses encode tetherin-antagonizing proteins. Our observation that several pandemic FLUAV strains can counteract tetherin via their HA and NA proteins identifies these proteins as novel tetherin antagonists and indicates that HA/NA-dependent inactivation of innate defenses may contribute to the efficient spread of pandemic FLUAV.
The Journal of Infectious Diseases | 2015
Heike Hofmann-Winkler; Kerstin Gnirß; Florian Wrensch; Stefan Pöhlmann
Abstract The ongoing Ebola virus (EBOV) disease (EVD) epidemic in Western Africa is the largest EVD outbreak recorded to date and requires the rapid development and deployment of antiviral measures. The viral glycoprotein (GP) facilitates host cell entry and, jointly with cellular interaction partners, constitutes a potential target for antiviral intervention. However, it is unknown whether the GPs of the currently and previously circulating EBOVs use the same mechanisms for cellular entry and are thus susceptible to inhibition by the same antivirals and cellular defenses. Here, we show that the GPs of the EBOVs circulating in 1976 and 2014 transduce the same spectrum of target cells, use the same cellular factors for host cell entry, and are comparably susceptible to blockade by antiviral interferon-induced transmembrane proteins and neutralizing antibody KZ52. Thus, the viruses responsible for the ongoing EVD epidemic should be fully susceptible to established antiviral strategies targeting GP and cellular entry factors.
PLOS ONE | 2017
Lennart Michel Reinke; Martin Spiegel; Teresa Plegge; Anika Hartleib; Inga Nehlmeier; Stefanie Gierer; Markus Hoffmann; Heike Hofmann-Winkler; Michael Winkler; Stefan Pöhlmann
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated.
PLOS ONE | 2016
Teresa Plegge; Heike Hofmann-Winkler; Martin Spiegel; Stefan Pöhlmann
The severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging, highly pathogenic bunyavirus against which neither antivirals nor vaccines are available. The SFTSV glycoproteins, Gn and Gc, facilitate viral entry into host cells. Gn and Gc are generated from a precursor protein, Gn/Gc, but it is currently unknown how the precursor is converted into the single proteins and whether this process is required for viral infectivity. Employing a rhabdoviral pseudotyping system, we demonstrate that a predicted signal sequence at the N-terminus of Gc is required for Gn/Gc processing and viral infectivity while potential proprotein convertase cleavage sites in Gc are dispensable. Moreover, we show that expression of Gn or Gc alone is not sufficient for host cell entry while particles bearing both proteins are infectious, and we provide evidence that Gn facilitates Golgi transport and virion incorporation of Gc. Collectively, these results suggest that signal peptidase liberates mature Gc from the Gn/Gc precursor and that this process is essential for viral infectivity and thus constitutes a potential target for antiviral intervention.