Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kerstin Gnirß is active.

Publication


Featured researches published by Kerstin Gnirß.


Virology | 2012

Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression

Kerstin Gnirß; Annika Kühl; Christina B. Karsten; Ilona Glowacka; Stephanie Bertram; Franziska Kaup; Heike Hofmann; Stefan Pöhlmann

Abstract Ebola (EBOV) and Marburg virus (MARV) cause severe hemorrhagic fever. The host cell proteases cathepsin B and L activate the Zaire ebolavirus glycoprotein (GP) for cellular entry and constitute potential targets for antiviral intervention. However, it is unclear if different EBOV species and MARV equally depend on cathepsin B/L activity for infection of cell lines and macrophages, important viral target cells. Here, we show that cathepsin B/L inhibitors markedly reduce 293T cell infection driven by the GPs of all EBOV species, independent of the type II transmembrane serine protease TMPRSS2, which cleaved but failed to activate EBOV-GPs. Similarly, a cathepsin B/L inhibitor blocked macrophage infection mediated by different EBOV-GPs. In contrast, MARV-GP-driven entry exhibited little dependence on cathepsin B/L activity. Still, MARV-GP-mediated entry was efficiently blocked by leupeptin. These results suggest that cathepsins B/L promote entry of EBOV while MARV might employ so far unidentified proteases for GP activation.


The Journal of Infectious Diseases | 2011

Comparative analysis of Ebola virus glycoprotein interactions with human and bat cells.

Annika Kühl; Markus Hoffmann; Marcel A. Müller; Vincent J. Munster; Kerstin Gnirß; Miriam Kiene; Theodros Solomon Tsegaye; Georg M. N. Behrens; Georg Herrler; Heinz Feldmann; Christian Drosten; Stefan Pöhlmann

Abstract Infection with Ebola virus (EBOV) causes hemorrhagic fever in humans with high case-fatality rates. The EBOV-glycoprotein (EBOV-GP) facilitates viral entry and promotes viral release from human cells. African fruit bats are believed not to develop disease upon EBOV infection and have been proposed as a natural reservoir of EBOV. We compared EBOV-GP interactions with human cells and cells from African fruit bats. We found that susceptibility to EBOV-GP–dependent infection was not limited to bat cells from potential reservoir species, and we observed that GP displayed similar biological properties in human and bat cells. The only exception was GP localization, which was to a greater extent intracellular in bat cells as compared to human cells. Collectively, our results suggest that GP interactions with fruit bat and human cells are similar and do not limit EBOV tropism for certain bat species.


Retrovirology | 2013

Platelet activation suppresses HIV-1 infection of T cells

Theodros Solomon Tsegaye; Kerstin Gnirß; Niels Rahe-Meyer; Miriam Kiene; Annika Krämer-Kühl; Georg M. N. Behrens; Jan Münch; Stefan Pöhlmann

BackgroundPlatelets, anucleate cell fragments abundant in human blood, can capture HIV-1 and platelet counts have been associated with viral load and disease progression. However, the impact of platelets on HIV-1 infection of T cells is unclear.ResultsWe found that platelets suppress HIV-1 spread in co-cultured T cells in a concentration-dependent manner. Platelets containing granules inhibited HIV-1 spread in T cells more efficiently than degranulated platelets, indicating that the granule content might exert antiviral activity. Indeed, supernatants from activated and thus degranulated platelets suppressed HIV-1 infection. Infection was inhibited at the stage of host cell entry and inhibition was independent of the viral strain or coreceptor tropism. In contrast, blockade of HIV-2 and SIV entry was less efficient. The chemokine CXCL4, a major component of platelet granules, blocked HIV-1 entry and neutralization of CXCL4 in platelet supernatants largely abrogated their anti-HIV-1 activity.ConclusionsRelease of CXCL4 by activated platelets inhibits HIV-1 infection of adjacent T cells at the stage of virus entry. The inhibitory activity of platelet-derived CXCL4 suggests a role of platelets in the defense against infection by HIV-1 and potentially other pathogens.


PLOS ONE | 2012

Influenza A virus does not encode a tetherin antagonist with Vpu-like activity and induces IFN-dependent tetherin expression in infected cells.

Michael Winkler; Stephanie Bertram; Kerstin Gnirß; Inga Nehlmeier; Ali Gawanbacht; Frank Kirchhoff; Christina Ehrhardt; Stephan Ludwig; Miriam Kiene; Anna-Sophie Moldenhauer; Ulrike Goedecke; Christina B. Karsten; Annika Kühl; Stefan Pöhlmann

The interferon-induced host cell factor tetherin inhibits release of human immunodeficiency virus (HIV) from the plasma membrane of infected cells and is counteracted by the HIV-1 protein Vpu. Influenza A virus (FLUAV) also buds from the plasma membrane and is not inhibited by tetherin. Here, we investigated if FLUAV encodes a functional equivalent of Vpu for tetherin antagonism. We found that expression of the FLUAV protein NS1, which antagonizes the interferon (IFN) response, did not block the tetherin-mediated restriction of HIV release, which was rescued by Vpu. Similarly, tetherin-mediated inhibition of HIV release was not rescued by FLUAV infection. In contrast, FLUAV infection induced tetherin expression on target cells in an IFN-dependent manner. These results suggest that FLUAV escapes the antiviral effects of tetherin without encoding a tetherin antagonist with Vpu-like activity.


The Journal of Infectious Diseases | 2015

Analysis of Ebola Virus Entry Into Macrophages

Franziska Dahlmann; Nadine Biedenkopf; Anne Babler; Willi Jahnen-Dechent; Christina B. Karsten; Kerstin Gnirß; Heike Schneider; Florian Wrensch; Christopher A. O'Callaghan; Stephanie Bertram; Georg Herrler; Stephan Becker; Stefan Pöhlmann; Heike Hofmann-Winkler

Abstract Ebolaviruses constitute a public health threat, particularly in Central and Western Africa. Host cell factors required for spread of ebolaviruses may serve as targets for antiviral intervention. Lectins, TAM receptor tyrosine kinases (Tyro3, Axl, Mer), T cell immunoglobulin and mucin domain (TIM) proteins, integrins, and Niemann-Pick C1 (NPC1) have been reported to promote entry of ebolaviruses into certain cellular systems. However, the factors used by ebolaviruses to invade macrophages, major viral targets, are poorly defined. Here, we show that mannose-specific lectins, TIM-1 and Axl augment entry into certain cell lines but do not contribute to Ebola virus (EBOV)-glycoprotein (GP)–driven transduction of macrophages. In contrast, expression of Mer, integrin αV, and NPC1 was required for efficient GP-mediated transduction and EBOV infection of macrophages. These results define cellular factors hijacked by EBOV for entry into macrophages and, considering that Mer and integrin αV promote phagocytosis of apoptotic cells, support the concept that EBOV relies on apoptotic mimicry to invade target cells.


The Journal of Infectious Diseases | 2015

Inhibition of Proprotein Convertases Abrogates Processing of the Middle Eastern Respiratory Syndrome Coronavirus Spike Protein in Infected Cells but Does Not Reduce Viral Infectivity

Stefanie Gierer; Marcel A. Müller; Adeline Heurich; Daniel Ritz; Benjamin L. Springstein; Christina B. Karsten; Alexander Schendzielorz; Kerstin Gnirß; Christian Drosten; Stefan Pöhlmann

Abstract Middle East respiratory syndrome coronavirus (MERS-CoV) infection is associated with a high case-fatality rate, and the potential pandemic spread of the virus is a public health concern. The spike protein of MERS-CoV (MERS-S) facilitates viral entry into host cells, which depends on activation of MERS-S by cellular proteases. Proteolytic activation of MERS-S during viral uptake into target cells has been demonstrated. However, it is unclear whether MERS-S is also cleaved during S protein synthesis in infected cells and whether cleavage is required for MERS-CoV infectivity. Here, we show that MERS-S is processed by proprotein convertases in MERS-S–transfected and MERS-CoV–infected cells and that several RXXR motifs located at the border between the surface and transmembrane subunit of MERS-S are required for efficient proteolysis. However, blockade of proprotein convertases did not impact MERS-S–dependent transduction of target cells expressing high amounts of the viral receptor, DPP4, and did not modulate MERS-CoV infectivity. These results show that MERS-S is a substrate for proprotein convertases and demonstrate that processing by these enzymes is dispensable for S protein activation. Efforts to inhibit MERS-CoV infection by targeting host cell proteases should therefore focus on enzymes that process MERS-S during viral uptake into target cells.


The Journal of Infectious Diseases | 2015

Interferon-Induced Transmembrane Protein–Mediated Inhibition of Host Cell Entry of Ebolaviruses

Florian Wrensch; Christina B. Karsten; Kerstin Gnirß; Markus Hoffmann; Kai Lu; Ayato Takada; Michael Winkler; Graham Simmons; Stefan Pöhlmann

Abstract Ebolaviruses are highly pathogenic in humans and nonhuman primates and pose a severe threat to public health. The interferon-induced transmembrane (IFITM) proteins can restrict entry of ebolaviruses, influenza A viruses, and other enveloped viruses. However, the breadth and mechanism of the antiviral activity of IFITM proteins are incompletely understood. Here, we employed ebolavirus glycoprotein–pseudotyped vectors and ebolavirus-like particles to address this question. We show that IFITM proteins inhibit the cellular entry of diverse ebolaviruses and demonstrate that type I interferon induces IFITM protein expression in macrophages, major viral targets. Moreover, we show that IFITM proteins block entry of influenza A viruses and ebolaviruses by different mechanisms and provide evidence that antibodies and IFITM proteins can synergistically inhibit cellular entry of ebolaviruses. These results provide insights into the role of IFITM proteins in infection by ebolaviruses and suggest a mechanism by which antibodies, though poorly neutralizing in vitro, might contribute to viral control in vivo.


Journal of Virology | 2015

Tetherin Sensitivity of Influenza A Viruses Is Strain Specific: Role of Hemagglutinin and Neuraminidase

Kerstin Gnirß; Pawel Zmora; Paulina Blazejewska; Michael Winkler; Anika Lins; Inga Nehlmeier; Sabine Gärtner; Anna-Sophie Moldenhauer; Heike Hofmann-Winkler; Thorsten Wolff; Michael Schindler; Stefan Pöhlmann

ABSTRACT The expression of the antiviral host cell factor tetherin is induced by interferon and can inhibit the release of enveloped viruses from infected cells. The Vpu protein of HIV-1 antagonizes the antiviral activity of tetherin, and tetherin antagonists with Vpu-like activity have been identified in other viruses. In contrast, it is incompletely understood whether tetherin inhibits influenza A virus (FLUAV) release and whether FLUAV encodes tetherin antagonists. Here, we show that release of several laboratory-adapted FLUAV strains and a seasonal FLUAV strain is inhibited by tetherin, while pandemic FLUAV A/Hamburg/4/2009 is resistant. Studies with a virus-like particle system and analysis of reassortant viruses provided evidence that the viral hemagglutinin (HA) is an important determinant of tetherin antagonism but requires the presence of its cognate neuraminidase (NA) to inhibit tetherin. Finally, tetherin antagonism by FLUAV was dependent on the virion context, since retrovirus release from tetherin-positive cells was not rescued, and correlated with an HA- and NA-dependent reduction in tetherin expression. In sum, our study identifies HA and NA proteins of certain pandemic FLUAV as tetherin antagonists, which has important implications for understanding FLUAV pathogenesis. IMPORTANCE Influenza A virus (FLUAV) infection is responsible for substantial global morbidity and mortality, and understanding how the virus evades the immune defenses of the host may uncover novel targets for antiviral intervention. Tetherin is an antiviral effector molecule of the innate immune system which can contribute to control of viral invasion. However, it has been unclear whether FLUAV is inhibited by tetherin and whether these viruses encode tetherin-antagonizing proteins. Our observation that several pandemic FLUAV strains can counteract tetherin via their HA and NA proteins identifies these proteins as novel tetherin antagonists and indicates that HA/NA-dependent inactivation of innate defenses may contribute to the efficient spread of pandemic FLUAV.


Viruses | 2014

Analysis of Determinants in Filovirus Glycoproteins Required for Tetherin Antagonism

Kerstin Gnirß; Marie Fiedler; Annika Krämer-Kühl; Sebastian Bolduan; Eva Mittler; Stephan Becker; Michael Schindler; Stefan Pöhlmann

The host cell protein tetherin can restrict the release of enveloped viruses from infected cells. The HIV-1 protein Vpu counteracts tetherin by removing it from the site of viral budding, the plasma membrane, and this process depends on specific interactions between the transmembrane domains of Vpu and tetherin. In contrast, the glycoproteins (GPs) of two filoviruses, Ebola and Marburg virus, antagonize tetherin without reducing surface expression, and the domains in GP required for tetherin counteraction are unknown. Here, we show that filovirus GPs depend on the presence of their authentic transmembrane domains for virus-cell fusion and tetherin antagonism. However, conserved residues within the transmembrane domain were dispensable for membrane fusion and tetherin counteraction. Moreover, the insertion of the transmembrane domain into a heterologous viral GP, Lassa virus GPC, was not sufficient to confer tetherin antagonism to the recipient. Finally, mutation of conserved residues within the fusion peptide of Ebola virus GP inhibited virus-cell fusion but did not ablate tetherin counteraction, indicating that the fusion peptide and the ability of GP to drive host cell entry are not required for tetherin counteraction. These results suggest that the transmembrane domains of filoviral GPs contribute to tetherin antagonism but are not the sole determinants.


Virology | 2012

The role of the alternative coreceptor GPR15 in SIV tropism for human cells

Miriam Kiene; Andrea Marzi; Andreas Urbanczyk; Stephanie Bertram; Tanja Fisch; Inga Nehlmeier; Kerstin Gnirß; Christina B. Karsten; David Palesch; Jan Münch; Francesca Chiodi; Stefan Pöhlmann; Imke Steffen

Many SIV isolates can employ the orphan receptor GPR15 as coreceptor for efficient entry into transfected cell lines, but the role of endogenously expressed GPR15 in SIV cell tropism is largely unclear. Here, we show that several human B and T cell lines express GPR15 on the cell surface, including the T/B cell hybrid cell line CEMx174, and that GPR15 expression is essential for SIV infection of CEMx174 cells. In addition, GPR15 expression was detected on subsets of primary human CD4(+), CD8(+) and CD19(+) peripheral blood mononuclear cells (PBMCs), respectively. However, GPR15(+) PBMCs were not efficiently infected by HIV and SIV, including cells from individuals homozygous for the defective Δ32 ccr5 allele. These results suggest that GPR15 is coexpressed with CD4 on PBMCs but that infection of CD4(+), GPR15(+) cells is not responsible for the well documented ability of SIV to infect CCR5(-) blood cells.

Collaboration


Dive into the Kerstin Gnirß's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam Kiene

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annika Kühl

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge