Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heike Kaltenegger is active.

Publication


Featured researches published by Heike Kaltenegger.


Journal of Orthopaedic Research | 2013

Effect of Platelet-Rich Plasma on the Biologic Activity of the Human Rotator-Cuff Fibroblasts: A Controlled In Vitro Study

Patrick Sadoghi; Birgit Lohberger; Birgit Aigner; Heike Kaltenegger; Jörg Friesenbichler; Matthias Wolf; Tarek Sununu; Andreas Leithner; Patrick Vavken

To assess the in vitro effect of platelet‐rich plasma (PRP) on biological activity of the human rotator cuff fibroblasts and to describe the optimal dose‐response to maximize cellular stimulation while reducing potential risk. Rotator cuff (RC) fibroblasts of n = 6 patients (mean age of 65.2 years) undergoing arthroscopic cuff tear reconstruction were cultured in vitro for 21 days and stimulated with PRP in three different concentrations (1‐, 5‐, and 10‐fold). Samples were obtained for DNA and GAG measurement at 1, 7, 14, and 21 days. The biological outcomes were regressed on the PRP concentration. The application of PRP significantly influenced the fibroblast proliferation and activity of the human rotator cuff with elevated glycosaminoglycan (GAG) and DNA levels. The dosage of PRP had the significantly highest impact on this proliferation using a onefold or fivefold application. PRP has a significant effect on fibroblast proliferation of the human rotator cuff in vitro with an optimal benefit using a onefold or fivefold PRP concentration. This study justifies further in vivo investigations using PRP at the human rotator cuff.


BioMed Research International | 2014

Effect of Cyclic Mechanical Stimulation on the Expression of Osteogenesis Genes in Human Intraoral Mesenchymal Stromal and Progenitor Cells

Birgit Lohberger; Heike Kaltenegger; Nicole Stuendl; Michael Payer; Beate Rinner; Andreas Leithner

We evaluated the effects of mechanical stimulation on the osteogenic differentiation of human intraoral mesenchymal stem and progenitor cells (MSPCs) using the Flexcell FX5K Tension System that mediated cyclic tensile stretch on the cells. MSPCs were isolated from human mandibular retromolar bones and characterized using flow cytometry. The positive expression of CD73, CD90, and CD105 and negativity for CD14, CD19, CD34, CD45, and HLA-DR confirmed the MSPC phenotype. Mean MSPC doubling time was 30.4 ± 2.1 hrs. The percentage of lactate dehydrogenase (LDH) release showed no significant difference between the mechanically stimulated groups and the unstimulated controls. Reverse transcription quantitative real-time PCR revealed that 10% continuous cyclic strain (0.5 Hz) for 7 and 14 days induced a significant increase in the mRNA expression of the osteogenesis-specific markers type-I collagen (Col1A1), osteonectin (SPARC), bone morphogenetic protein 2 (BMP2), osteopontin (SPP1), and osteocalcin (BGLAP) in osteogenic differentiated MSPCs. Furthermore, mechanically stimulated groups produced significantly higher amounts of calcium deposited into the cultures and alkaline phosphatase (ALP). These results will contribute to a better understanding of strain-induced bone remodelling and will form the basis for the correct choice of applied force in oral and maxillofacial surgery.


Planta Medica | 2012

Effect of costunolide and dehydrocostus lactone on cell cycle, apoptosis, and ABC transporter expression in human soft tissue sarcoma cells.

Nadine Kretschmer; Beate Rinner; Nicole Stuendl; Heike Kaltenegger; Elisabeth Wolf; Olaf Kunert; Herbert Boechzelt; Andreas Leithner; Rudolf Bauer; Birgit Lohberger

Human soft tissue sarcomas represent a rare group of malignant tumours that frequently exhibit chemotherapeutic resistance and increased metastatic potential following unsuccessful treatment. In this study, we investigated the effects of costunolide and dehydrocostus lactone, which have been isolated from Saussurea lappa using activity-guided isolation, on three soft tissue sarcoma cell lines of various origins. The effects on cell proliferation, cell cycle distribution, apoptosis induction, and ABC transporter expression were analysed. Both compounds inhibited cell viability dose- and time-dependently. IC50 values ranged from 6.2 µg/mL to 9.8 µg/mL. Cells treated with costunolide showed no changes in cell cycle, little in caspase 3/7 activity, and low levels of cleaved caspase-3 after 24 and 48 h. Dehydrocostus lactone caused a significant reduction of cells in the G1 phase and an increase of cells in the S and G2/M phase. Moreover, it led to enhanced caspase 3/7 activity, cleaved caspase-3, and cleaved PARP indicating apoptosis induction. In addition, the influence of costunolide and dehydrocostus lactone on the expression of ATP binding cassette transporters related to multidrug resistance (ABCB1/MDR1, ABCC1/MRP1, and ABCG2/BCRP1) was examined using real-time RT-PCR. The expressions of ABCB1/MDR1 and ABCG2/BCRP1 in liposarcoma and synovial sarcoma cells were significantly downregulated by dehydrocostus lactone. Our data demonstrate for the first time that dehydrocostus lactone affects cell viability, cell cycle distribution and ABC transporter expression in soft tissue sarcoma cell lines. Furthermore, it led to caspase 3/7 activity as well as caspase-3 and PARP cleavage, which are indicators of apoptosis. Therefore, this compound may be a promising lead candidate for the development of therapeutic agents against drug-resistant tumours.


PLOS ONE | 2013

Sesquiterpene Lactones Downregulate G2/M Cell Cycle Regulator Proteins and Affect the Invasive Potential of Human Soft Tissue Sarcoma Cells

Birgit Lohberger; Beate Rinner; Nicole Stuendl; Heike Kaltenegger; Bibiane Steinecker-Frohnwieser; Eva Bernhart; Ehsan Bonyadi Rad; Annelie Weinberg; Andreas Leithner; Rudolf Bauer; Nadine Kretschmer

Soft tissue sarcomas (STS) represent a rare group of malignant tumors that frequently exhibit chemotherapeutic resistance and increased metastatic potential. Many studies have demonstrated the great potential of plant-derived agents in the treatment of various malignant entities. The present study investigates the effects of the sesquiterpene lactones costunolide and dehydrocostus lactone on cell cycle, MMP expression, and invasive potential of three human STS cell lines of various origins. Both compounds reduced cell proliferation in a time- and dose-dependent manner. Dehydrocostus lactone significantly inhibited cell proliferation, arrested the cells at the G2/M interface and caused a decrease in the expression of the cyclin-dependent kinase CDK2 and the cyclin-dependent kinase inhibitor p27Kip1. In addition, accumulation of cells at the G2/M phase transition interface resulted in a significant decrease in cdc2 (CDK1) together with cyclin B1. Costunolide had no effect on the cell cycle. Based on the fact that STS tend to form daughter cell nests and metastasize, the expression levels of matrix metalloproteinases (MMPs), which play a crucial role in extracellular matrix degradation and metastasis, were investigated by Luminex® technology and real-time RT-PCR. In the presence of costunolide, MMP-2 and -9 levels were significantly increased in SW-982 and TE-671 cells. Dehydrocostus lactone treatment significantly reduced MMP-2 and -9 expression in TE-671 cells, but increased MMP-9 level in SW-982 cells. In addition, the invasion potential was significantly reduced after treatment with both sesquiterpene lactones as investigated by the HTS FluoroBlock™ insert system.


BMC Cancer | 2015

Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation

Birgit Lohberger; Andreas Leithner; Nicole Stuendl; Heike Kaltenegger; Werner Kullich; Bibiane Steinecker-Frohnwieser

BackgroundChondrosarcoma is characterized for its lack of response to conventional cytotoxic chemotherapy, propensity for developing lung metastases, and low rates of survival. Research within the field of development and expansion of new treatment options for unresectable or metastatic diseases is of particular priority. Diacerein, a symptomatic slow acting drug in osteoarthritis (SYSADOA), implicates a therapeutic benefit for the treatment of chondrosarcoma by an antitumor activity.MethodsAfter treatment with diacerein the growth behaviour of the cells was analyzed with the xCELLigence system and MTS assay. Cell cycle was examined using flow cytometric analysis, RT-PCR, and western blot analysis of specific checkpoint regulators. The status for phosophorylation of mitogen-activated protein kinases (MAPKs) was analyzed with a proteome profiler assay. In addition, the possible impact of diacerein on apoptosis was investigated using cleaved caspase 3 and Annexin V/PI flow cytometric analysis.ResultsDiacerein decreased the cell viability and the cell proliferation in two different chondrosarcoma cell lines in a dose dependent manner. Flow cytometric analysis showed a classical G2/M arrest. mRNA and protein analysis revealed that diacerein induced a down-regulation of the cyclin B1-CDK1 complex and a reduction in CDK2 expression. Furthermore, diacerein treatment increased the phosphorylation of p38α and p38β MAPKs, and Akt1, Akt2, and Akt 3 in SW-1353, whereas in Cal-78 the opposite effect has been demonstrated. These observations accordingly to our cell cycle flow cytometric analysis and protein expression data may explain the G2/M phase arrest. In addition, no apoptotic induction after diacerein treatment, neither in the Cal-78 nor in the SW-1353 cell line was observed.ConclusionsOur results demonstrate for the first time that the SYSADOA diacerein decreased the viability of human chondrosarcoma cells and induces G2/M cell cycle arrest by CDK1/cyclin B1 down-regulation.


PLOS ONE | 2016

The Proteasome Inhibitor Bortezomib Affects Chondrosarcoma Cells via the Mitochondria-Caspase Dependent Pathway and Enhances Death Receptor Expression and Autophagy

Birgit Lohberger; Bibiane Steinecker-Frohnwieser; Nicole Stuendl; Heike Kaltenegger; Andreas Leithner; Beate Rinner

High grade chondrosarcoma is characterized by its lack of response to conventional cytotoxic chemotherapy, the tendency to develop lung metastases, and low survival rates. Research within the field prioritizes the development and expansion of new treatment options for dealing with unresectable or metastatic diseases. Numerous clinical trials using the proteasome inhibitor bortezomib have shown specific efficacy as an active antitumor agent for treating a variety of solid tumors. However, as of yet the effect of bortezomib on chondrosarcoma has not been investigated. In our study, bortezomib decreased cell viability and proliferation in two different chondrosarcoma cell lines in a time- and dose dependent manner. FACS analysis, mRNA- and protein expression studies illustrated that induction of apoptosis developed through the intrinsic mitochondria-caspase dependent pathway. Furthermore, bortezomib treatment significantly increased expression of the death receptors TRAILR-1 and TRAILR-2 in chondrosarcoma cells. An increased expression of the autophagy markers Atg5/12, Beclin, and LC3BI-II supports the interpretation that bortezomib functions as a trigger for autophagy. Our results demonstrated for the first time that bortezomib reduced viability and proliferation of chondrosarcoma cells, induced apoptosis via the mitochondria-caspase dependent pathway and enhanced death receptor expression and autophagy.


Journal of Cranio-maxillofacial Surgery | 2013

Tri-lineage potential of intraoral tissue-derived mesenchymal stromal cells

Birgit Lohberger; Michael Payer; Beate Rinner; Heike Kaltenegger; Elisabeth Wolf; Katharina Schallmoser; Dirk Strunk; Eva Rohde; Andrea Berghold; Karin Pekovits; Angelika Wildburger; Andreas Leithner; Reinhard Windhager; Norbert Jakse

The purpose of this study was to analyse the potential of intraoral tissues as a source of mesenchymal stromal and progenitor cells (MSPCs) for usage in future cell-based therapy models. Cells were isolated from four different tissues harvested during oral surgery intervention: (1) bone explants from the posterior maxilla, (2) bone explants from the oblique line, (3) from the mandibular periosteum, and (4) from the dental pulp. Donor sites and tissues were evaluated in terms of their accessibility, donor-site morbidity and average time period until appearance of MSPC colonies. Cell characterization was performed by flow cytometry and evaluation of in vitro osteogenic, adipogenic and chondrogenic differentiation potential. Adherent cell colonies were isolated from tissues from all sites after 4-8 days. The cells showed characteristics of MSPCs, so they were expanded up to clinical scales and demonstrated multipotency. The lowest donor-site morbidity was observed in the posterior maxilla harvests, while the highest donor-site morbidity was associated with harvests from mandibular sites. All sites seem to be potential sources of mesenchymal stromal and progenitor cells for tissue engineering approaches. Therefore, harvest morbidity and patient acceptance should affect the choice of the appropriate site.


Journal of Ethnopharmacology | 2015

25-O-acetyl-23,24-dihydro-cucurbitacin F induces cell cycle G2/M arrest and apoptosis in human soft tissue sarcoma cells.

Birgit Lohberger; Nadine Kretschmer; Eva Bernhart; Beate Rinner; Nicole Stuendl; Heike Kaltenegger; Stefan Kahl; Rudolf Bauer; Andreas Leithner

ETHNOPHARMACOLOGICAL RELEVANCE Quisqualis indica is used in traditional Chinese medicine to treat cancer and related syndromes and also known for its anthelminthic effects. AIM OF THE STUDY Soft tissue sarcomas represent a rare group of malignant tumors that frequently exhibit chemotherapeutic resistance and increased metastatic potential. In this study, we evaluated the cytotoxic, apoptosis inducing and cell cycle arresting effects of 25-O-acetyl-23,24-dihydro-cucurbitacin F which has been isolated from leaves and twigs of Q. indica. MATERIAL AND METHODS The present study investigates the effects of 25-O-acetyl-23,24-dihydro-cucurbitacin F (1) on cell viability, cell cycle distribution, and apoptotic induction of three human sarcoma cell lines of various origins by using the CellTiter 96(®) AQueous One Solution Cell Proliferation Assay, flow cytometrical experiments, real-time RT-PCR, Western blotting, and the Caspase-Glo(®) 3/7 Assay RESULTS We could show that 1 reduced cell viability in a dose-dependent manner and arrested the cells at the G2/M interface. The accumulation of cells at the G2/M phase resulted in a significant decrease of the cell cycle checkpoint regulators cyclin B1, cyclin A, CDK1, and CDK2. Interestingly, 1 inhibited survivin expression significantly, which functions as a key regulator of mitosis and programmed cell death, and is overexpressed in many tumor types including sarcomas. Moreover, 1 induced apoptosis in liposarcoma and rhabdomyosarcoma cells caspase-3 dependently. CONCLUSION Our data strongly support 1 as a very interesting target for further investigation and development of novel therapeutics in sarcoma research.


Oncotarget | 2017

Histone deacetylase inhibitors vorinostat and panobinostat induce G1 cell cycle arrest and apoptosis in multidrug resistant sarcoma cell lines

Eva Bernhart; Nicole Stuendl; Heike Kaltenegger; Christian Windpassinger; Nicholas Donohue; Andreas Leithner; Birgit Lohberger

Synovial sarcoma and high grade chondrosarcoma are characterized by their lack of response to conventional cytotoxic chemotherapy, the tendency to develop lung metastases, and low survival rates. Research within the field prioritizes the development and expansion of new treatment options for dealing with unresectable or metastatic diseases. Numerous clinical trials using histone deacetylases inhibitors (HDACi) have shown specific efficacy as an active antitumor agent for treating a variety of solid tumors. However, as of yet the effect of different HDACi on synovial- and chondrosarcoma cells has not been investigated. In this study, vorinostat (SAHA), panobinostat (LBH-589), and belinostat (PXD101) decreased cell viability of synovial sarcoma (SW-982) and chondrosarcoma (SW-1353) cells in a time- and dose dependent manner and arrested SW-982 cells in the G1/S phase. Western blot analysis determined the responsible cell cycle regulator proteins. In addition, we found apoptotic induction by caspase 3/7 activity, caspase 3 cleavage, and PARP cleavage. In SW-1353 cells only SAHA showed comparable effects. Noteworthy, all HDACi tested had synergistic effects with the topoisomerase II inhibitor doxorubicin in SW-1353 chondrosarcoma cells making the cells more sensitive to the chemotherapeutic drug. Our results show for the first time that SAHA and LBH-589 reduced viability of sarcoma cells and arrested them at the G1/S checkpoint, while also inducing apoptosis and enhancing chemotherapeutic sensitivity, especially in chondrosarcoma cells. These data demonstrate the exciting potential of HDACi for use in sarcoma treatment.


Biochemistry and biophysics reports | 2017

Pharmacological treatment with diacerein combined with mechanical stimulation affects the expression of growth factors in human chondrocytes

Bibiane Steinecker-Frohnwieser; Heike Kaltenegger; Lukas Weigl; Anda Mann; Werner Kullich; Andreas Leithner; Birgit Lohberger

Background Osteoarthritis (OA) as the main chronic joint disease arises from a disturbed balance between anabolic and catabolic processes leading to destructions of articular cartilage of the joints. While mechanical stress can be disastrous for the metabolism of chondrocytes, mechanical stimulation at the physiological level is known to improve cell function. The disease modifying OA drug (DMOAD) diacerein functions as a slowly-acting drug in OA by exhibiting anti-inflammatory, anti-catabolic, and pro-anabolic properties on cartilage. Combining these two treatment options revealed positive effects on OA-chondrocytes. Methods Cells were grown on flexible silicone membranes and mechanically stimulated by cyclic tensile loading. After seven days in the presence or absence of diacerein, inflammation markers and growth factors were analyzed using quantitative real-time PCR and enzyme linked immune assays. The influence of conditioned medium was tested on cell proliferation and cell migration. Results Tensile strain and diacerein treatment reduced interleukin-6 (IL-6) expression, whereas cyclooxygenase-2 (COX2) expression was increased only by mechanical stimulation. The basic fibroblast growth factor (bFGF) was down regulated by the combined treatment modalities, whereas prostaglandin E2 (PGE2) synthesis was reduced only under OA conditions. The expression of platelet-derived growth factor (PDGF) and vascular endothelial growth factor A (VEGF-A) was down-regulated by both. Conclusions From our study we conclude that moderate mechanical stimulation appears beneficial for the fate of the cell and improves the pharmacological effect of diacerein based on cross-talks between different initiated pathways. General significance Combining two different treatment options broadens the perspective to treat OA and improves chondrocytes metabolism.

Collaboration


Dive into the Heike Kaltenegger's collaboration.

Top Co-Authors

Avatar

Birgit Lohberger

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Andreas Leithner

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Nicole Stuendl

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Beate Rinner

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Sadoghi

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Wolf

Medical University of Graz

View shared research outputs
Researchain Logo
Decentralizing Knowledge