Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heike M. Freese is active.

Publication


Featured researches published by Heike M. Freese.


Applied and Environmental Microbiology | 2007

New and fast method to quantify respiration rates of bacterial and plankton communities in freshwater ecosystems by using optical oxygen sensor spots.

Mareike Warkentin; Heike M. Freese; Ulf Karsten; Rhena Schumann

ABSTRACT A new method of respiration rate measurement based on oxygen luminescence quenching in sensor spots was evaluated for the first time for aquatic bacterial communities. The commonly used Winkler and Clark electrode methods to quantify oxygen concentration both require long incubation times, and the latter additionally causes signal drift due to oxygen consumption at the cathode. The sensor spots proved to be advantageous over those methods in terms of precise and quick oxygen measurements in natural bacterial communities, guaranteeing a respiration rate estimate during a time interval short enough to neglect variations in organism composition, abundance, and activity. Furthermore, no signal drift occurs during measurements, and respiration rate measurements are reliable even at low temperatures and low oxygen consumption rates. Both a natural bacterioplankton sample and a bacterial isolate from a eutrophic river were evaluated in order to optimize the new method for aquatic microorganisms. A minimum abundance of 2.2 × 106 respiring cells ml−1 of a bacterial isolate was sufficient to obtain a distinct oxygen depletion signal within 20 min at 20°C with the new oxygen sensor spot method. Thus, a culture of a bacterial isolate from a eutrophic river (OW 144; 20 × 106 respiring bacteria ml−1) decreased the oxygen saturation about 8% within 20 min. The natural bacterioplankton sample respired 2.8% from initially 94% oxygen-saturated water in 30 min. During the growth season in 2005, the planktonic community of a eutrophic river consumed between 0.7 and 15.6 μmol O2 liter−1 h−1. The contribution of bacterial respiration to the total plankton community oxygen consumption varied seasonally between 11 and 100%.


FEMS Microbiology Ecology | 2011

Food quality of heterotrophic bacteria for Daphnia magna: evidence for a limitation by sterols

Dominik Martin-Creuzburg; Birgit Beck; Heike M. Freese

The quality of heterotrophic bacteria as food for metazoan grazers has been investigated poorly. We conducted growth experiments with juvenile Daphnia magna feeding on different strains of heterotrophic bacteria that represent typical pelagic bacteria of five phylogenetically distinct groups. The bacterial food suspensions were supplemented with cholesterol and/or the polyunsaturated fatty acid eicosapentaenoic acid (EPA), two essential nutrients that are either absent or scarcely represented in bacteria. Our data imply that the selected heterotrophic bacteria are of poor food quality for D. magna, which was indicated either by very low somatic growth rates or by high mortality. However, with four out of six bacterial strains tested, the somatic growth rates increased significantly upon supplementation with cholesterol, which shows that the lack of sterols in bacteria is a major food quality constraint. We did not find clear evidence for a limitation by EPA on bacterial diets within our growth experiments. High mortality was observed when D. magna was fed with Hydrogenophaga sp. or Pseudomonas sp., which indicates that these two bacterial strains are toxic to D. magna. Our findings highlight the limitations of bacteria as a carbon source for Daphnia and point to a so far underestimated diversity of interactions between grazers and its bacterial food.


Microbial Ecology | 2011

Composition and stability of the microbial community inside the digestive tract of the aquatic crustacean daphnia magna

Heike M. Freese; Bernhard Schink

Small filter-feeding zooplankton organisms like the cladoceran Daphnia spp. are key members of freshwater food webs. Although several interactions between Daphnia and bacteria have been investigated, the importance of the microbial communities inside Daphnia guts has been studied only poorly so far. In the present study, we characterised the bacterial community composition inside the digestive tract of a laboratory-reared clonal culture of Daphnia magna using 16S rRNA gene libraries and terminal-restriction length polymorphism fingerprint analyses. In addition, the diversity and stability of the intestinal microbial community were investigated over time, with different food sources as well as under starvation stress and death, and were compared to the community in the cultivation water. The diversity of the Daphnia gut microbiota was low. The bacterial community consisted mainly of Betaproteobacteria (e.g. Limnohabitans sp.), few Gammaproteobacteria (e.g. Pseudomonas sp.) and Bacteroidetes that were related to facultatively anaerobic bacteria, but did not contain typical fermentative or obligately anaerobic gut bacteria. Rather, the microbiota was constantly dominated by Limnohabitans sp. which belongs to the Lhab-A1 tribe (previously called R-BT065 cluster) that is abundant in various freshwaters. Other bacterial groups varied distinctly even under constant cultivation conditions. Overall, the intestinal microbial community did not reflect the community in the surrounding cultivation water and clustered separately when analysed via the Additive Main Effects and Multiplicative Interaction model. In addition, the microbiota proved to be stable also when Daphnia were exposed to bacteria associated with a different food alga. After starvation, the community in the digestive tract was reduced to stable members. After death of the host animals, the community composition in the gut changed distinctly, and formerly undetected bacteria were activated. Our results suggest that the Daphnia microbiota consists mainly of an aerobic resident bacterial community which is indigenous to this habitat.


Frontiers in Microbiology | 2016

Fuerstia marisgermanicae gen. nov., sp. nov., an Unusual Member of the Phylum Planctomycetes from the German Wadden Sea.

Timo Kohn; Anja Heuer; Mareike Jogler; John Vollmers; Christian Boedeker; Boyke Bunk; Patrick Rast; Daniela Borchert; Ines Glöckner; Heike M. Freese; Hans-Peter Klenk; Jörg Overmann; Anne-Kristin Kaster; Manfred Rohde; Sandra Wiegand; Christian Jogler

Members of the phylum Planctomycetes are ubiquitous bacteria that dwell in aquatic and terrestrial habitats. While planctomycetal species are important players in the global carbon and nitrogen cycle, this phylum is still undersampled and only few genome sequences are available. Here we describe strain NH11T, a novel planctomycete obtained from a crustacean shell (Wadden Sea, Germany). The phylogenetically closest related cultivated species is Gimesia maris, sharing only 87% 16S rRNA sequence identity. Previous isolation attempts have mostly yielded members of the genus Rhodopirellula from water of the German North Sea. On the other hand, only one axenic culture of the genus Pirellula was obtained from a crustacean thus far. However, the 16S rRNA gene sequence of strain NH11T shares only 80% sequence identity with the closest relative of both genera, Rhodopirellula and Pirellula. Thus, strain NH11T is unique in terms of origin and phylogeny. While the pear to ovoid shaped cells of strain NH11T are typical planctomycetal, light-, and electron microscopic observations point toward an unusual variation of cell division through budding: during the division process daughter- and mother cells are connected by an unseen thin tubular-like structure. Furthermore, the periplasmic space of strain NH11T was unusually enlarged and differed from previously known planctomycetes. The complete genome of strain NH11T, with almost 9 Mb in size, is among the largest planctomycetal genomes sequenced thus far, but harbors only 6645 protein-coding genes. The acquisition of genomic components by horizontal gene transfer is indicated by the presence of numerous putative genomic islands. Strikingly, 45 “giant genes” were found within the genome of NH11T. Subsequent analysis of all available planctomycetal genomes revealed that Planctomycetes as such are especially rich in “giant genes”. Furthermore, Multilocus Sequence Analysis (MLSA) tree reconstruction support the phylogenetic distance of strain NH11T from other cultivated Planctomycetes of the same phylogenetic cluster. Thus, based on our findings, we propose to classify strain NH11T as Fuerstia marisgermanicae gen. nov., sp. nov., with the type strain NH11T, within the phylum Planctomycetes.


Microbial Ecology | 2010

Substrate Utilization Profiles of Bacterial Strains in Plankton from the River Warnow, a Humic and Eutrophic River in North Germany

Heike M. Freese; Anja Eggert; Jay L. Garland; Rhena Schumann

Bacteria are very important degraders of organic substances in aquatic environments. Despite their influential role in the carbon (and many other element) cycle(s), the specific genetic identity of active bacteria is mostly unknown, although contributing phylogenetic groups had been investigated. Moreover, the degree to which phenotypic potential (i.e., utilization of environmentally relevant carbon substrates) is related to the genomic identity of bacteria or bacterial groups is unclear. The present study compared the genomic fingerprints of 27 bacterial isolates from the humic River Warnow with their ability to utilize 14 environmentally relevant substrates. Acetate was the only substrate utilized by all bacterial strains. Only 60% of the strains respired glucose, but this substrate always stimulated the highest bacterial activity (respiration and growth). Two isolates, both closely related to the same Pseudomonas sp., also had very similar substrate utilization patterns. However, similar substrate utilization profiles commonly belonged to genetically different strains (e.g., the substrate profile of Janthinobacterium lividum OW6/RT-3 and Flavobacterium sp. OW3/15-5 differed by only three substrates). Substrate consumption was sometimes totally different for genetically related isolates. Thus, the genomic profiles of bacterial strains were not congruent with their different substrate utilization profiles. Additionally, changes in pre-incubation conditions strongly influenced substrate utilization. Therefore, it is problematic to infer substrate utilization and especially microbial dissolved organic matter transformation in aquatic systems from bacterial molecular taxonomy.


Genome Biology and Evolution | 2017

Trajectories and Drivers of Genome Evolution in Surface-Associated Marine Phaeobacter

Heike M. Freese; Johannes Sikorski; Boyke Bunk; Carmen Scheuner; Jan P. Meier-Kolthoff; Cathrin Spröer; Lone Gram; Jörg Overmann

Abstract The extent of genome divergence and the evolutionary events leading to speciation of marine bacteria have mostly been studied for (locally) abundant, free-living groups. The genus Phaeobacter is found on different marine surfaces, seems to occupy geographically disjunct habitats, and is involved in different biotic interactions, and was therefore targeted in the present study. The analysis of the chromosomes of 32 closely related but geographically spread Phaeobacter strains revealed an exceptionally large, highly syntenic core genome. The flexible gene pool is constantly but slightly expanding across all Phaeobacter lineages. The horizontally transferred genes mostly originated from bacteria of the Roseobacter group and horizontal transfer most likely was mediated by gene transfer agents. No evidence for geographic isolation and habitat specificity of the different phylogenomic Phaeobacter clades was detected based on the sources of isolation. In contrast, the functional gene repertoire and physiological traits of different phylogenomic Phaeobacter clades were sufficiently distinct to suggest an adaptation to an associated lifestyle with algae, to additional nutrient sources, or toxic heavy metals. Our study reveals that the evolutionary trajectories of surface-associated marine bacteria can differ significantly from free-living marine bacteria or marine generalists.


Frontiers in Microbiology | 2017

Adaptation of Surface-Associated Bacteria to the Open Ocean: A Genomically Distinct Subpopulation of Phaeobacter gallaeciensis Colonizes Pacific Mesozooplankton

Heike M. Freese; Anika Methner; Jörg Overmann

The marine Roseobacter group encompasses numerous species which occupy a large variety of ecological niches. However, members of the genus Phaeobacter are specifically adapted to a surface-associated lifestyle and have so far been found nearly exclusively in disjunct, man-made environments including shellfish and fish aquacultures, as well as harbors. Therefore, the possible natural habitats, dispersal and evolution of Phaeobacter spp. have largely remained obscure. Applying a high-throughput cultivation strategy along a longitudinal Pacific transect, the present study revealed for the first time a widespread natural occurrence of Phaeobacter in the marine pelagial. These bacteria were found to be specifically associated to mesoplankton where they constitute a small but detectable proportion of the bacterial community. The 16S rRNA gene sequences of 18 isolated strains were identical to that of Phaeobacter gallaeciensis DSM26640T but sequences of internal transcribed spacer and selected genomes revealed that the strains form a distinct clade within P. gallaeciensis. The genomes of the Pacific and the aquaculture strains were highly conserved and had a fraction of the core genome of 89.6%, 80 synteny breakpoints, and differed 2.2% in their nucleotide sequences. Diversification likely occurred through neutral mutations. However, the Pacific strains exclusively contained two active Type I restriction modification systems which is commensurate with a reduced acquisition of mobile elements in the Pacific clade. The Pacific clade of P. gallaeciensis also acquired a second, homolog phosphonate transport system compared to all other P. gallaeciensis. Our data indicate that a previously unknown, distinct clade of P. gallaeciensis acquired a limited number of clade-specific genes that were relevant for its association with mesozooplankton and for colonization of the marine pelagial. The divergence of the Pacific clade most likely was driven by the adaptation to this novel ecological niche rather than by geographic isolation.


Genome Announcements | 2014

Draft Genome Sequence of Serratia sp. Strain DD3, Isolated from the Guts of Daphnia magna

Anja Poehlein; Heike M. Freese; Rolf Daniel; Diliana D. Simeonova

ABSTRACT We report the draft genome sequence of Serratia sp. strain DD3, a gammaproteobacterium from the family Enterobacteriaceae. It was isolated from homogenized guts of Daphnia magna. The genome size is 5,274 Mb.


International Journal of Systematic and Evolutionary Microbiology | 2017

Phaeobacter piscinae sp. nov., a species of the Roseobacter group and potential aquaculture probiont

Eva C. Sonnenschein; Christopher Phippen; Kristian Fog Nielsen; Ramona Valentina Mateiu; Jette Melchiorsen; Lone Gram; Jörg Overmann; Heike M. Freese

Four heterotrophic, antimicrobial, motile, marine bacterial strains, 27-4T, 8-1, M6-4.2 and S26, were isolated from aquaculture units in Spain, Denmark and Greece. All four strains produced the antibiotic compound tropodithietic acid, which is a key molecule in their antagonism against fish pathogenic bacteria. Cells of the strains were Gram-reaction-negative, rod-shaped and formed star-shaped aggregates in liquid culture and brown-coloured colonies on marine agar. The predominant cellular fatty acids were C18 : 1ω7c, C16 : 0, C11 methyl C18 : 1ω7c and C16 : 0 2-OH, and the polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an aminolipid, a phospholipid and an unidentified lipid. The strains grew optimally at 31-33 °C. Growth was observed at a salt concentration between 0.5 and 5-6 % NaCl with an optimum at 2-3 %. The pH range for growth of the strains was from pH 6 to 8-8.5 with an optimum at pH 7. Based on 16S rRNA gene sequence analysis, the strains are affiliated with the genus Phaeobacter. The genome sequences of the strains have a DNA G+C content of 60.1 % and share an average nucleotide identity (ANI) of more than 95 %. The four strains are distinct from the type strains of the closely related species Phaeobactergallaeciensis and Phaeobacterinhibens based on an ANI of 90.5-91.7 and 89.6-90.4 %, respectively, and an in silico DNA-DNA hybridization relatedness of 43.9-46.9 and 39.8-41.9 %, respectively. On the basis of phylogenetic analyses as well as phenotypic and chemotaxonomic properties, the isolates are considered to represent a novel species, for which the name Phaeobacter piscinae sp. nov. is proposed. The type strain is 27-4T (=DSM 103509T=LMG 29708T).


Hydrobiologia | 2013

Food quality of mixed bacteria–algae diets for Daphnia magna

Heike M. Freese; Dominik Martin-Creuzburg

Collaboration


Dive into the Heike M. Freese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lone Gram

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Anja Poehlein

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rolf Daniel

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Christopher Phippen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Eva C. Sonnenschein

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge